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Modern Portfolio Theory



Why Portfolio Optimization

FoF asset allocation

– How much capital to 
assign to each fund?

Portfolio asset allocation

– How much capital to assign to 
each strategy?

Alpha strategy asset allocation

– How much capital to assign to 
each stock?



Harry Markowitz

It all starts with 
Markowitz in 1952…

Won the Nobel Memorial 
Prize in Economic 
Sciences in 1990.

– Standard textbook model

– Widely taught in universities

– MBA courses
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Modern Portfolio Theory – Insights

An asset's risk and 
return should be 
assessed by how it 
contributes to a 
portfolio's overall 
risk and return, but 
not just by itself.

Mean-Variance (MV) 
optimization

Investors are risk 
averse, meaning 
that given two 
portfolios that offer 
the same expected 
return, investors 
will prefer the less 
risky one.

An investor who 
wants higher 
expected returns 
must accept more 
risk.

An investor can 
have individual 
risk aversion 
characteristics in 
terms of the risk 
(tolerance) 
parameter.



Modern Portfolio Theory – Math

• 𝐦𝐚𝐱
𝝎

𝝎𝐄 𝒓𝒕+𝟏 − 𝝀𝝎′𝜮𝒕𝝎

– E 𝑟𝑡+1 is the expected return for the next period,  a known quantity
– Σ𝑡 is the covariance matrix for the assets, a known matrix
– where 𝜔 is the optimal portfolio weights, found by solving a deterministic problem

• Constraints: 𝑨𝝎 ≤ 𝒃
– No short selling: 𝜔 ≥ 0

• Alternatively, we have

– min
𝜔

𝜔′Σ𝑡𝜔 − 𝜆𝜔 E 𝑟𝑡+1

• Solution: Quadratic Programming
• NM:

– http://redmine.numericalmethod.com/projects/public/repository/svn-
algoquant/show/core/src/main/java/com/numericalmethod/algoquant/model/portfolioo
ptimization/markowitz

http://redmine.numericalmethod.com/projects/public/repository/svn-algoquant/show/core/src/main/java/com/numericalmethod/algoquant/model/portfoliooptimization/markowitz


Efficient Frontier

• Given

– 𝜔E 𝑟𝑡+1 = 𝜇

• Find 𝜔 s.t.,

– 𝜔𝑒𝑓𝑓 = argmin
𝜔

𝜆𝜔′Σ𝑡𝜔



Problems with Markowitz 
Portfolio Optimization



Estimation Problem with Markowitz’s Theory

• Require the knowledge of means and covariances.

– Too many parameters to estimate: 𝑁 +
𝑁2+𝑁

2
.

• For 𝑁 = 300, we have 45,450 parameters to estimate.

• For 𝑁 = 3000, we have 4,504,500 parameters to estimate.

• Chopra & Ziemba (1993) shows that errors in means are about 10x as 
important as errors in variances, and errors in variances are about 2x 
important as errors in covariances.

– Time varying. Tied to business cycles.



Problems with Sample Covariance Matrix

• A sample covariance matrix is often ill-conditioned, nearly singular, sometimes not 
even invertible and sometimes not even positive semi-definite.
– dimension: 𝑝, number of samples: 𝑛

–
𝑝

𝑛
> 1, matrix not invertible

–
𝑝

𝑛
< 1 but not negligible, matrix ill-conditioned

• Linear dependency among stocks.
– asynchronous data
– incomplete data
– artificial changes due to stress-tests

• Error Maximization:
– Largest sample eigenvalues are systematically biased upwards.
– Smallest sample eigenvalues are systematically biased downwards.
– Inverting a sample covariance matrix increases significantly the estimation error.
– Capital allocated to the extreme eigenvalues where they are most unreliable.



Problems with Sample Mean

• Sample mean is only an estimation using TWO data points, namely the TWO end points, 
regardless of how big the sample size is.

• Given a set of historical returns 𝑟1, … , 𝑟𝑡 , the sample mean is

• ҧ𝑟 = σ𝑖=1
𝑡 𝑟𝑖

• ≈ σ𝑖=1
𝑡 log 1 + 𝑟𝑖 = σ𝑖=1

𝑡 log 𝑝𝑖 − log 𝑝𝑖−1

• = log 𝑝𝑡 − log 𝑝0
• Assume returns follow Gaussian distribution.

– Nassim Nicholas Taleb: After the stock market crash (in 1987), they rewarded two 
theoreticians, Harry Markowitz and William Sharpe, who built beautifully Platonic models 
on a Gaussian base, contributing to what is called Modern Portfolio Theory. Simply, if you 
remove their Gaussian assumptions and treat prices as scalable, you are left with hot air. 
The Nobel Committee could have tested the Sharpe and Markowitz models—they work 
like quack remedies sold on the Internet—but nobody in Stockholm seems to have 
thought about it.



Problems with Diversification

• Litterman & et al. (1992, 1999, 2003):

– When unconstrained, portfolios will 
have large long and short positions.

– When subject to long only constraint, 
capital is allocated only to a few assets.

• Best & Grauer (1991): 

– A small increase in expected return can 
consume half of the capital.



Problems with Constraints

Cannot model non-linear constraints such as market impact.

σ𝑗∈𝑆𝑖
𝜔𝑗
0 + 𝜔𝑗 ≤ 𝑢𝑖 for sector 𝑖 = 1,… , 𝑆

Objective function:

max
𝜔

𝜔E 𝑟𝑡+1 − 𝜆𝑃𝜔
′Σ𝑡𝜔 − 𝜆𝑀෍

𝑗=1

𝑛

𝑚𝑗 𝜔𝑗

3
2 + 𝑐𝑗 𝜔𝑗

Minimizing 
variance

Diversificati
on 

constraints 
(sector 

exposure)

Tax, 
transaction 
costs, etc.

Market 
impact

– max
𝜔

𝜔E 𝑟𝑡+1 , s.t.,

– 𝜔′Σ𝑡𝜔 ≤ 𝜎𝑀𝐴𝑋
– 1′𝜔 = 1

– 𝜔 ≥ 0



Problem with Performance

• P&L is often worse than the 1/N strategy (equal weighting).



Comments on Markowitz

Wesley Gray: Although Markowitz did win a Nobel Prize, and this was 
partly based on his elegant mathematical solution to identifying mean-
variance efficient portfolios, a funny thing happened when his ideas 
were applied in the real world: mean-variance performed poorly. The 
fact that a Nobel-Prize winning idea translated into a no-value-add-
situation for investors is something to keep in mind when considering 
any optimization method for asset allocation ...complexity does not 
equal value!



Classical Solutions for Portfolio 
Optimization



Estimating Covariance Matrix



Solutions to Estimating Covariance – Dimension Reduction

• Dimension reduction via multifactor models
– Relate the i-th asset returns 𝑟𝑖 to k factors f1, …, fk by

– 𝑟𝑖 = 𝛼𝑖 + 𝑓1, … , 𝑓𝑘
′𝛽𝑖 + 𝜖𝑖

– 𝛼𝑖, 𝛽𝑖 are unknown regression parameters; 𝜖𝑖 unobserved random noise with 
mean 0 and are uncorrelated.

– Cov 𝑟𝑖𝑡, 𝑟𝑗𝑡 = 𝛽𝑖𝑡
′ V 𝑓 𝛽𝑗𝑡

′ + Cov 𝜖𝑖𝑡, 𝜖𝑗𝑡
– E.g., alpha strategy, Fama-French model, CAPM, APT
– NM: 

• http://redmine.numericalmethod.com/projects/public/repository/svn-
algoquant/show/core/src/main/java/com/numericalmethod/algoquant/model/factorm
odel

http://redmine.numericalmethod.com/projects/public/repository/svn-algoquant/show/core/src/main/java/com/numericalmethod/algoquant/model/factormodel


Solutions to Estimating Covariance – Shrinkage Estimators

• Pull the extreme eigenvalues back to the mean.
• Ledoit and Wolf (2003, 2004):

– ෠Σ = መ𝛿 ෠𝐹 + 1 − መ𝛿 𝑆
• መ𝛿 is an estimator of the optimal shrinkage constant
• ෠𝐹 is given by mean of the prior distribution or a structured covariance matrix, which has much fewer 

parameters than 𝑁 +
𝑁2+𝑁

2
.

• S the sample covariance

– NM:
• https://nm.dev/html/javadoc/nmdev/dev/nm/stat/covariance/LedoitWolf2004.html
• https://nm.dev/html/javadoc/nmdev/dev/nm/stat/covariance/nlshrink/LedoitWolf2016.html

• Ledoit and Wolf (2012): nonlinear shrinkage

https://nm.dev/html/javadoc/nmdev/dev/nm/stat/covariance/LedoitWolf2004.html
https://nm.dev/html/javadoc/nmdev/dev/nm/stat/covariance/nlshrink/LedoitWolf2016.html


Non-Linear Shrinkage

• Ledoit and Wolf (2016): non-linear 
shrinkage

• sample eigenvalues: 
𝜆𝑛,1 ≤ 𝜆𝑛,2 ≤ ⋯ ≤ 𝜆𝑛,𝑝

• estimated true eigenvalues:
𝜏𝑛,1 ≤ 𝜏𝑛,2 ≤ ⋯ ≤ 𝜏𝑛,𝑝

• estimation problem as minimization:

ෞ𝜏𝑛 = argmin
𝑡∈ 0,∞

1

𝑝
෍

1

𝑝

𝑞𝑛,𝑝
𝑖 𝑡 − 𝜆𝑛,𝑖

2

• the best known method

c=1/3 c=2
more dimension than data



QuEST Transformation

• 𝑄𝑛,𝑝 𝒕 = 𝑞𝑛,𝑝
1 𝒕 , … , 𝑞𝑛,𝑝

𝑝
𝒕

– mapping from true eigenvalues to sample eigenvalues

• 𝑞𝑛,𝑝
𝑖 𝒕 = 𝑝׬ 𝑖−1 /𝑝

𝑖/𝑝
𝐹𝑛,𝑝
𝑡 −1

𝑣 𝑑𝑣

• 𝐹𝑛,𝑝
𝑡 −1

𝑣 : the inverse of 𝐹𝑛,𝑝
𝑡 𝑥

• 𝐹𝑛,𝑝
𝑡 𝑥 = ൞

max 1 −
𝑛

𝑝
,
1

𝑝
σ𝑖=1
𝑝

1 𝑡𝑖=0 , 𝑥 = 0

lim
𝜂→0+

1

𝜋
∞−׬
𝑥
lm 𝑚𝑛,𝑝

𝑡 𝜉 + 𝑖𝜂 𝑑𝜉

– the limiting empirical cdf of sample eigenvalues

• 𝑚𝑛,𝑝
𝑡 𝑧 is the unique solution to this equation

– 𝑚 =
1

𝑝
σ𝑖=1
𝑝 1

𝑡𝑖 1−
𝑝

𝑛
−
𝑝

𝑛
𝑧𝑚 −𝑧



Inverse Covariance Matrix vs Covariance Matrix



Solutions to Estimating Covariance – Covariance Selection

• max
𝑋

log det 𝑋 − Tr Σ𝑋 − 𝜌 Card𝑋

• Awoye, OA; (2016): Graphical LASSO

• Dempster (1972): the covariance structure 
of a multivariate normal population can be 
simplified by setting elements of the inverse 
of the covariance matrix to zero

• NM:
– https://nm.dev/html/javadoc/nmdev/dev/nm/stat/covariance/covar

ianceselection/lasso/CovarianceSelectionGLASSOFAST.html

– https://nm.dev/html/javadoc/nmdev/dev/nm/stat/covariance/covar
ianceselection/lasso/CovarianceSelectionLASSO.html

https://nm.dev/html/javadoc/nmdev/dev/nm/stat/covariance/covarianceselection/lasso/CovarianceSelectionGLASSOFAST.html
https://nm.dev/html/javadoc/nmdev/dev/nm/stat/covariance/covarianceselection/lasso/CovarianceSelectionLASSO.html


Estimating Mean



1 2 3

Solutions to Estimating Mean – Statistical Methods

NM:
http://redmine.numericalmethod.com/projects/public/repository/sv
n-algoquant/show/core/src/main/java/tech/nmfin/algoquant/model

Trading 
signals

𝑟𝑖 = 𝛼𝑖 + 𝑓1, … , 𝑓𝑘
′𝛽𝑖 + 𝜖𝑖

Multifactor 
models

Shrinkage

http://redmine.numericalmethod.com/projects/public/repository/svn-algoquant/show/core/src/main/java/tech/nmfin/algoquant/model


Solutions to Estimating Mean – Black-Litterman

• Combined Return Vector
– E 𝑅 = 𝜏Σ −1 + 𝑃′Ω−1𝑃 −1 𝜏Σ −1Π + 𝑃′Ω−1𝑄

• P: a matrix that identifies the assets involved in the views (𝐾 × 𝑁)
• Ω: a diagonal covariance matrix of error terms from the expressed views representing the uncertainties in each view (𝐾 × 𝐾)

• П: the implied equilibrium return vector (𝑁 × 1)
• Q: the view vector (𝐾 × 1)



Diversification



Solutions to Diversification – Almost Efficient Portfolios

• MVO intends to give an optimized portfolio in terms of risk-reward
• MVO does not intend to give a diversified portfolio
• Many portfolios on the efficient frontier are indeed concentrated
• However, there are many well diversified portfolios within a small neighborhood of the 

efficient frontier
• Almost Efficient Portfolios:

– max
𝜔

𝐷 𝜔 s.t.,  (D is the diversification criterion.)

• 𝜔′Σ𝜔 ≤ 𝜎eff + ∆𝜎, relaxation of portfolio variance

• 𝑅eff − Δ𝑅 ≤ 𝜔′𝑟, relaxation of portfolio expected return

• 1′𝜔 = 1

• NM:

– https://nmfin.tech/2013/06/19/solving-the-corner-solution-problem-of-portfolio-
optimization/

– https://nm.dev/html/javadoc/nmdev/tech/nmfin/portfoliooptimization/corvalan2005/Corval
an2005.html

https://nmfin.tech/2013/06/19/solving-the-corner-solution-problem-of-portfolio-optimization/
https://nm.dev/html/javadoc/nmdev/tech/nmfin/portfoliooptimization/corvalan2005/Corvalan2005.html


Solutions to Diversification – Using Constraints

• Black-Litterman

• Diversification constraints, e.g.,

– lower and upper bounds

– sector exposure



Non-Linear Constraints



Second Order Conic Programming

• min
𝑥

𝑓′𝑥, s.t.,

– 𝐴𝑖𝑥 + 𝑏𝑖 2 ≤ 𝑐𝑖
′𝑥 + 𝑑𝑖, 𝑖 = 1,… ,𝑚

– 𝐹𝑥 = 𝑔

• LP, QP

• Solution: interior point method



Second Order Conic Programming with Constraints

• Market impact

– σ𝑗=1
𝑛 𝑚𝑗 𝜔𝑗

3

2 ≤ 𝑡2

• Diversification constraints (sector exposure)
– σ𝑗∈𝑆𝑖

𝜔𝑗
0 + 𝜔𝑗 ≤ 𝑢𝑖 for sector 𝑖 = 1,… , 𝑆

• Many other constraints can be modeled as SOCP constraints.
• NM has a collection of them.



Optimizer Comparison

• Numerical Method Optimizers
– 25 times faster than free optimizers, e.g., R

• MOSEK
• Gurobi
• CPLEX
• XPRESS



NM Portfolio Optimization System



Solution to Performance – Better Estimations

• We combine all the NM modules and algorithms 
to create better MVO models.
– Better mean estimation
– Better covariance estimation
– Better constraint modeling
– Better diversification criterion

• NM MVO comparison framework:
• http://redmine.numericalmethod.com/projects/public/repository/svn-

algoquant/show/core/src/main/java/tech/nmfin/algoquant/model/portfoliooptimization/si
mulation

http://redmine.numericalmethod.com/projects/public/repository/svn-algoquant/show/core/src/main/java/tech/nmfin/algoquant/model/portfoliooptimization/simulation


NM Portfolio Optimizer

• https://portoptim.nmfin.tech/

https://portoptim.nmfin.tech/


Stochastic Portfolio Optimization 
Models



Root Cause for Model Failure

• The historical returns that we observe are random. They are 
just one realization of the true/unknown/unobservable joint 
probability distribution of the assets traded.

• From the same joint probability distribution, what we 
observe is just one possibility of the unknown random 
process. We could have observed a different reality.

• Any estimators, e.g., mean, covariance, that we estimate 
from the past returns are therefore also random.
– Classical theories never account for that randomness.



The Missing Portfolio Variance

• We write portfolio variance as such

– Var 𝑊 = 𝐸 Var 𝑊|𝑅𝑛 + Var E 𝑊|𝑅𝑛
= E 𝑤𝑇Σ𝑛𝑤 + Var 𝑤𝑇𝜇𝑛

– Using Σ𝑛 to replace Σ and assuming that we know 
𝜇 and Σ essentially ignores the second term.

– That is the root cause of all Markowitz based 
model.



Portfolio Optimization Fundamentally Stochastic

• A “good” portfolio optimization model should therefore be 
fundamentally stochastic, dealing explicitly with the fact that the 
observed past returns are random.

• We offer two implementations in AlgoQuant:

– Solving a stochastic optimization problem assuming mean and 
covariance are random (Lai and etc. 2011)

– A functional approach to iteratively improve over a baseline model 
(Tsang and He 2020)



Stochastic Optimization

• We should optimize a portfolio with respect to the 
true/underlying/unknown/stochastic joint probably distribution.

• All classical theories optimize a portfolio with respect to the (random) 
observed past data and assume that they are true and deterministic.



Stochastic Optimization



Mean and Covariance Cannot Be Known

Markowitz Objective:

– max
𝑤

E 𝑤′𝑟𝑛+1 − 𝜆 Var 𝑤′𝑟𝑛+1

– can be  transformed into a 
“mean versus second moment” 
optimization problem
w(η) 
= arg min

𝑤
ሼ

ሽ

λE[(𝑤𝑇 𝑟𝑛 + 1)2] −

ηE(𝑤𝑇 𝑟𝑛 + 1)

Let 𝑊 = 𝑤′𝑟𝑛+1 , 𝑊 the portfolio return, we have

– Var 𝑊 = E Var 𝑊|𝑅𝑛 + Var E 𝑊|𝑅𝑛
= E 𝑤′Σ𝑛𝑤 + Var 𝑤′𝜇𝑛

– When expected returns and covariances are known, the 2nd

term is mistakenly 0

Cause for Failure: require the knowledge of expected 
returns and covariances

– Estimation of covariance may be possible

– Estimation of expected returns is probably 
the single most challenging problem in 
finance



Stochastic Optimization

• max
𝑤

E 𝑤′𝑟𝑛+1 − 𝜆Var 𝑤′𝑟𝑛+1

– Note 𝑤 is now random because its value depends on the (past) observations which 
are themselves random

– Thus, 𝑤 is now inside the expectation and variance operators; fundamentally 
different from classical theories, where 𝑤 is outside the operators

– 𝑤′𝑟𝑛+1 is random
– We can add in other constraints, e.g., long-only, cardinality

• The fundamental innovation is that 
– we assume that expected returns and covariance are not available and therefore 

are random
– 𝑤 is random and depends on the (random) past returns
– This is a radically different approach than most theories developed in the last 60 

years



Solution to Standard Stochastic Optimization Problem

• A standard stochastic control problem in the Bayesian setting

– max
𝑎∈𝐴

E g 𝑋, 𝜃, 𝑎

– 𝑔(𝑋, 𝜃, 𝑎) is the reward when action 𝑎 is taken; the maximization is over the 
action space 𝐴

• The key to its solution is the law of conditional expectations

– 𝐸𝑔 𝑋, 𝜃, 𝑎 = 𝐸 𝐸 𝑔 𝑋, 𝜃, 𝑎 𝑋
– The stochastic optimization problem can be solved by choosing 𝑎 to maximize 

the posterior reward
– However, this cannot be applied to maximizing nonlinear functions such as 

[𝐸𝑔(𝑋, 𝜃, 𝑎)]2 in our problem



Conversion to Standard Problem

• Let 𝑊 = 𝑤𝑇𝑟𝑛+1
• Note that 𝐸 𝑊 − 𝜆𝑉𝑎𝑟 𝑊 = ℎ 𝐸𝑊,𝐸𝑊2

– where ℎ(𝑥, 𝑦) = 𝑥 + 𝜆𝑥2 − 𝜆𝑦

• Let 𝑊𝐵 = 𝑤𝐵
𝑇𝑟𝑛+1 and 𝜂 = 1 + 2𝜆𝐸 𝑊𝐵

– where 𝑤𝐵 is the Bayes weight vector

• ℎ 𝐸𝑊, 𝐸𝑊2 − ℎ 𝐸𝑊𝐵, 𝐸𝑊𝐵
2

= 𝐸(𝑊) − 𝐸(𝑊𝐵) − 𝜆ሼ𝐸(𝑊2) − 𝐸(𝑊𝐵
2)ሽ + 𝜆ሼ(𝐸𝑊)2−(𝐸𝑊𝐵)

2ሽ
= 𝜂ሼ𝐸(𝑊) − 𝐸(𝑊𝐵)𝑊ሽ + 𝜆ሼ𝐸(𝑊𝐵

2) − 𝐸(𝑊2)ሽ + 𝜆ሼ𝐸 𝑊 − 𝐸 𝑊𝐵 ሽ2

≥ ሼ𝜆(𝑊𝐵
2) − 𝜂𝐸(𝑊𝐵)ሽ − ሼ𝜆𝐸(𝑊2) − 𝜂𝐸(𝑊)ሽ

• Hence 𝜆𝐸(𝑊𝐵
2) − 𝜂𝐸(𝑊𝐵) ≤ 𝜆𝐸(𝑊2) − 𝜂𝐸(𝑊)

• Therefore, we want to find the η that minimizes the equation.



Solution to Stochastic Portfolio Optimization

• We solve an equivalent problem

–max
𝜂

E 𝑤(η)′𝑟𝑛+1 − 𝜆Var 𝑤(η)′𝑟𝑛+1

• where w(η) is the solution of the stochastic 
optimization problem

– w(η) = arg min
𝑤

λE[(𝑤𝑇 𝑟𝑛+1)
2] − ηE(𝑤𝑇 𝑟𝑛+1)

– η = 1 + 2λE(WB)



Solution to Performance – Unknown Mean and 
Unknown Covariance



Realized Cumulative Returns Over Time – Unknown 
Mean and Unknown Covariance



Empirical Results

• Using a pool of ETFs provided by a bank in China, we compare the 
asset allocation results of SAAM to 1/N (and other models)

• Our results show that SAAM out performs 1/N in a wide range of 
parameters, hence stability

• SAAM properties:
– When the market rallies big, it rides the trend but not to the extreme 

extend, giving good and risk-controlled profits
– When the market crashes, it limits the drawdown
– When the market walks sideway (since 2016/1), it has a much smaller 

volatility and smoother pnl curve



Empirical Results {rebalance=6M, data=1M}



SAAM Stability

• From the table, we see that for {rebalance = 6M}, almost all (except 1) parameter sets out perform 1/N

– The average PnL is 2.26x of that of equal-weighting

– The max profit is 3.91x, the min profit 1.6x

– The Sharpe ratio is 0.45 vs. 0.14

• We repeat the analysis for the whole (reasonable) parameter space

– SAAM out performs 1/N 55.56% in terms of final PnL

– Average PnL $64,265 vs. $53,052, max drawdown 27.72% vs 42.79%， Sharpe ratio 0.26 vs. 0.21

• Conclusion: SAAM consistently out performs equal-weighting and is the probably the best asset allocation theory to date

rebalance window riskAverse algorithm Profit After Commission (rate(0.200000%))Commission (0.200000%)Information Ratio For Periods (capital(1000000.000000), benchmark(0.000000), period(P1Y))Max Drawdown Percentage (capital(1000000.000000))BEAT benchmark rebalance window riskAverse algorithm Profit After Commission (rate(0.200000%))Commission (0.200000%)Information Ratio For Periods (capital(1000000.000000), benchmark(0.000000), period(P1Y))Max Drawdown Percentage (capital(1000000.000000))

P6M P9M 0.1 NMSAAM 232,292.77$      20,281.10$        1.128315787 41.89% 1 P6M P9M 0.1 equal 31,549.45$ 16,181.39$ 0.122890693 44.34%

P6M P3M 1 NMSAAM 173,566.64$      19,505.77$        0.319557842 36.74% 1 P6M P3M 1 equal 59,338.54$ 16,172.34$ 0.344467733 43.99%

P6M P1M 0.1 NMSAAM 94,333.03$        20,268.17$        0.216543966 27.77% 1 P6M P1M 0.1 equal 52,142.09$ 16,115.82$ 0.134276425 44.06%

P6M P3M 0.1 NMSAAM 86,539.34$        18,613.82$        0.240494521 37.00% 1 P6M P3M 0.1 equal 59,338.54$ 16,172.34$ 0.344467733 43.99%

P6M P6M 0.1 NMSAAM 69,081.43$        18,224.59$        0.165673319 33.91% 1 P6M P6M 0.1 equal 37,666.03$ 16,249.19$ 0.039309408 44.21%

P6M P6M 1 NMSAAM 68,408.35$        18,258.34$        0.182644292 33.24% 1 P6M P6M 1 equal 37,666.03$ 16,249.19$ 0.039309408 44.21%

P6M P12M 1 NMSAAM 67,882.62$        18,425.08$        0.268401727 22.86% 1 P6M P12M 1 equal 29,682.01$ 16,114.07$ 0.06498543 43.83%

P6M P9M 1 NMSAAM 61,818.51$        18,209.09$        1.631970017 31.70% 1 P6M P9M 1 equal 31,549.45$ 16,181.39$ 0.122890693 44.34%

P6M P12M 0.1 NMSAAM 50,359.00$        18,163.79$        0.234910757 21.58% 1 P6M P12M 0.1 equal 29,682.01$ 16,114.07$ 0.06498543 43.83%

P6M P1M 1 NMSAAM 47,450.11$        20,160.90$        0.119946006 31.74% 0 P6M P1M 1 equal 52,142.09$ 16,115.82$ 0.134276425 44.06%

avg 95,173.18$        19,011.06$        0.450845823 31.84% avg 42,075.62$ 16,166.56$ 0.141185938 44.09%

stdev 60,150.56$         931.40$              stdev 12,321.51$ 52.51$         

max 232,292.77$      20,281.10$        max 59,338.54$ 16,249.19$ 

min 47,450.11$         18,163.79$        min 29,682.01$ 16,114.07$ 



Dynamic Index

• Using SZ50 China as the benchmark, we compare the NM 
index to it from 2005/1 to 2017/12

• Our results show that

– SAAM out performs the market index in an absolute majority of 
wide range of parameters hence stability

– and in terms of a number of measures hence lower risk



Empirical Results (SZ50, China)

• Even without filtering and comparing using all 
(reasonable) parameters, our dynamic portfolios already 
outperform SZ50 consistently
– 93.75% of our portfolios better than the index in terms of 

Sharpe
– 73.44% of our portfolios better than the index in terms of 

final PnL

• By selecting a stable parameter plateau, our result 
shows that NM index is unambiguously superior than 
the original index
– 100% of our portfolios better than the index in terms of 

Sharpe and PnL
– Sharpe ratio 27.11% better than the index
– Final PnL 18.87% better than the index

• In summary, not only does NM index provides a better 
return in terms of PnL, it also provides  a lower risk 
alternative than the index in terms of lower volatility and 
lower max drawdown

SZ50 all parameters selected plateau

average return (daily) 0.06% 0.06% 0.06%

stdev return (daily) 1.79% 1.62%

SR (annualized) 0.4855 0.5983 0.6178

better (SR) 0 93.75% 100.00%

dSR/SR 0.00% 23.41% 27.11%

better (cumpnl) 0 73.44% 100.00%

dPnl/PnL 0 8.63% 18.87%



Functional Optimization



Functional weighting maximizer

• Remind that Var 𝑊 = E Var 𝑊|𝑅𝑛 +
Var E 𝑊|𝑅𝑛 = E 𝑤′Σ𝑛𝑤 + Var 𝑤′𝜇𝑛

• If 𝑟𝑡 are i.i.d., it is proved that best weight is a 
constant vector. However, 𝑟𝑡 are not independent.  
Engle and Bollerslev (1986): volatility clustering and 
strong autocorrelations of squared returns.

• The point is that the optimal weight 𝑤, as a 
function of past returns, is also random



Iterative Improvements of a Portfolio

• The main idea is to 

– simulate past returns by bootstrap to estimate 
the underlying joint probability distribution

– and use gradient descent to search for a better 
weighting iteratively



Model

• Conditional mean: 𝑢𝑛(𝑆𝑛) = 𝐸(𝑟𝑛+1|𝑆𝑛)
• Conditional second moment: 𝑉𝑛(𝑆𝑛) = 𝐸(𝑟𝑛+1𝑟𝑛+1

𝑇 |𝑆𝑛)
• Then 𝐸(𝑤𝑇𝑟𝑛+1) = 𝐸(𝑤𝑇𝑢𝑛) and 𝐸((𝑤𝑇𝑟𝑛+1)

2) = 𝐸(𝑤𝑇𝑉𝑛𝑤)
– We assume that 𝑤 is a function of the random 𝑆𝑛

• Let 𝐺 𝑤 = 𝐹 𝐸 𝑤𝑇𝑢𝑛 , 𝐸 𝑤𝑇𝑉𝑛𝑤 , the objective function
– ∇𝐺 𝑤 = ∇𝐹(𝐸(𝑤𝑇𝑢𝑛), 𝐸(𝑤

𝑇𝑉𝑛𝑤)) , the total derivative

• By Taylor Expansion, we have: 
– G 𝑤 + 𝑡𝛿 = 𝐺 w + ∇𝐺 𝑤 T 𝑡𝐸 𝛿𝑇𝑢𝑛 , 2𝑡𝐸 𝑤𝑇𝑉𝑛𝛿 + 𝑡2𝐸 𝛿𝑇V𝑛𝛿 + 𝑂(𝑡2), for 

small t > 0

• If we choose the search direction 𝛿(𝑆𝑛) = (𝑢𝑛(𝑆𝑛), 2𝑉𝑛(𝑆𝑛) 𝑤(𝑆𝑛)), 
– then ∇𝐺(𝑤) and δ does not equal to zero almost for sure
– the first order term of δ becomes E 𝛿 2 > 0
– hence 𝐺( 𝑤 + 𝑡𝛿) > 𝐺( 𝑤) for positive small t



Gradient Search

• Use simulation to compute conditional expectations.
– bootstrap samples {𝑟𝑏1

∗ , 𝑟𝑏2
∗ , . . . , 𝑟𝑏𝑛

∗ } (b = 1,2, . . . B) drawn with replacement from the 
observed sample {𝑟1, 𝑟2, . . . , 𝑟𝑛}

– 𝑢𝑛 and 𝑉𝑛 are estimated for each sample path

– 𝑈0 =
1

𝐵
σ𝑏=1
𝐵 𝑤0 𝑆𝑛

𝑏 𝑇
𝑢𝑛 𝑆𝑛

𝑏 ≈ 𝐸 𝑤0
𝑇𝑢𝑛

– 𝑉0 =
1

𝐵
σ𝑏=1
𝐵 𝑤0(𝑆𝑛

𝑏)𝑇 𝑉𝑛(𝑆𝑛
𝑏)𝑤0(𝑆𝑛

𝑏) ≈ 𝐸(𝑤0
𝑇𝑉𝑛𝑤0)

• One step:

– 𝛿𝑇 = 𝑃 ∗ 𝑢𝑛 𝑆𝑛 , 2𝑉𝑛 𝑆𝑛 𝑤0 𝑆𝑛 ∇𝐺 𝑤0

– 𝑃 = (𝐼 − 𝟏𝟏T)/𝑝, the projection matrix
• Note that 𝑃𝑇𝟏 = 0 which means 𝛿𝑇𝟏 = 0, so that we can add it to the original weight

– ∇𝐺 𝑤 = ∇𝐹 𝐸 𝑤𝑇𝑢𝑛 , 𝐸 𝑤𝑇𝑉𝑛𝑤 = ∇𝐹 𝑈0, 𝑉0
– Choose 𝑡 such that G 𝑤0 + 𝑡𝛿 > G(𝑤0)

• Multi-steps: replace 𝑤0 by 𝑤0 + 𝑡𝛿; repeat the above



• Block bootstrap
– Group ሼ𝑟1, . . . . , 𝑟𝑛ሽ into blocks that contain consecutive 𝑟𝑡 and 

sample on those blocks so that certain level of correlation 
among the resampled returns is remained

• Parametric bootstrap
– For example, if we know that 𝑟𝑡 follow AR(1) model with 𝝃𝒕 =
ሼ𝜉1,𝑡, . . . . , 𝜉𝑛,𝑡ሽ are independent, then we can apply bootstrap 
to sample ሼ𝝃𝟏

(𝑏) , . . . , 𝝃𝒏
(𝑏)ሽ by drawing with replacement from 

ሼ𝝃𝟏 , . . . , 𝝃𝒏ሽ and then generate 𝑆𝑛
(𝑏)

= ሼ𝑟𝑡
(𝑏)
: 𝑟𝑖,𝑡

(𝑏)
= 𝑎𝑖(𝑆𝑛) +

𝑏𝑖(𝑆𝑛)𝑟𝑖,𝑡
(𝑏)
𝜉𝑖,𝑡
(𝑏)
, t = 1, . . . , nሽ

𝑆𝑛
(𝑏)

generation



Empirical results on SP500

• The upper panel is the time series plot of realized cumulative excess returns over S&P500 with the constraints ∑wi = 
1 and wi ≥ −0.2.
The lower panel is the time series plot of realized cumulative excess returns over S&P500 with the constraints ∑wi = 
1 and wi ≥ −1.



A Potential New Dynamic SP500 Index

• The upper panel is the time series plot of realized cumulative excess 
returns over S&P500 with the constraints ∑wi = 1 and wi ≥ 0, hence Long 
Only.



Model Validation and Risk 
Management



Model Validation

• We should optimize a portfolio with respect to 
the underlying joint probability distribution of the 
assets, rather than historical returns.

• We do simulation to check the risk of a portfolio 
under many different scenarios including extreme 
stressed situations.



Markov Chain Monte-Carlo
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Market at t

Regime Rh with prob. ph(t)

R1 → p1(t)

R2 → p2(t)

...

Rn → pn(t) Transition probabilities 

phk

Drift and Covariance for 

Rh

Next step:

R1 → p1(t+1)

R2 → p2(t+1)

...

Rn → pn(t+1)

Market at t+1

Next step: Regime Rh with 

prob. ph(t+1)



Hidden Markov Model

Dynamics in the Market Variable Space
❑ Finite Number of Regimes R1,…,Rm

o Covariance Matrix Gk

o Drift Vector mk

o Rk ~ N(mk,Gk)
❑ Transition Probability Matrix

o P(t,t+1) = (phk)
o phk = Probability of transitioning from Rh to Rk

o ∀ℎ, σ𝑘=1
𝑚 𝑝ℎ𝑘 = 1

o P(t,t+n) = Pn



Simulation: Markov Chain Monte-Carlo

• Euler Scheme:

➢ Discretized Time t0,…,tn

➢ Pick new regime R(ti+1) according to P applied to current regime R(ti)

➢ Simulate Market Evolution following R(ti+1)

• Gaussian Mixture  “Fat Tails”

• Asymptotically Gaussian

o 𝜇∞ = σ𝑘=1
𝑚 𝜋𝑘𝜇𝑘

o Γ∞ = σ𝑘=1
𝑚 𝜋𝑘Γ𝑘

o P’p = p    p = (p1,…,pm)
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MCMC Calibration: Regime Identification

1. Determine Breakpoints {t1,…,tn} and “homogenous” periods Jk = [tk–1, tk]

2. Calibrate a Gaussian distribution N(mk,Gk) over consecutive periods Jk

3. Clusterize the set of Fk = (mk ,Gk), using some information distance (K-L, Tsallis, Hellinger…)

4. Issue: these distributions lie in a high dimensional space n(n + 3)/2  No recurrence

i. Reduce dimension by describing the market with fewer indices

ii. Project Fk onto a lower dimensional space, approximately preserving distances, using Spectral Embedding

• Common practice: focus only on volatility…

iii. The projection now has some recurrence.

5. Estimate Transition Probabilities

i. Baum-Welch algorithm: too imprecise

ii. SVM or EM provide more accurate results

iii. Depends on time spent within a regime

6. Crisis Prediction: Mild regime that is likely to transit to a wild one
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Spectral Embedding and Clustering



Clustering by Tree Algorithm



Regime Sequence
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Multi-Regime Simulation vs. Observed

73

• Joint distribution of 4 risk 
factors:

▪ SP500

▪ SP Sector Financials

▪ SP Sector Oil Companies

▪ MSCI World

▪ We can see that 
simulated returns match 
very well the observed 
returns in terms of 
extreme situations

Pink: Multi-Gaussian 
Simulation (MCMC)

Green: Actual Returns



Portfolio Multi-Regime Optimization

❑ Identification of Current Regime
❑ MCMC simulated over a given period of time (e.g. one month)

o Expected Return of each asset
o Monte-Carlo simulation  VaR of any virtual portfolio (Gaussian 

mixture)

❑ Maximization of Expected Return / VaR
❑ Rebalancing based on dynamic criterion (profit taking) and/or 

signal strength
❑ Benchmark: Same with 1 regime = Markowitz, 1/N, etc.



Applications



1 2 3

Applications

Alternatives to SPX, CSI, HSI, FTSE, 

Euronext, DAX, NIKKEI, Nifty with higher 

Sharpe ratio and lower volatility

Indices

Adding a cardinality constraint will 

enable good enough tracking of an 

index using only a subset of the 

stocks

Partial 
Indices

More effective 
portfolio 
hedging



NM Index

Applying SAAM to the same set of 
constituent stocks of an index, we 
are essentially creating a new index

NM index, compared to existing index, is 
significantly more stable, lower 
volatility/risk and higher Sharpe ratio

Provide (risk adverse) investors with an alternative market investment 
opportunity

– Investors buy the same set of stocks but with different 
weights or capital allocation

– Because of significantly lower drawdown, can safely do 
leverage to gear up performance, if wanted

NM



Commercialization

– They are more attractive to risk adverse investors, such as banks, 
insurance companies, pension funds, who have little risk appetite

– Funds/EFTs tailored to the risk appetite of different investors

– More effective tools for portfolio hedging

Underwrite NM index funds/ETFs

Using NM index as the underlying asset, 
underwrite call options to investors who want 
principal protection

Using NM index as the underlying asset, 
underwrite futures, calls, puts

Using NM index as the underlying asset, 
underwrite derivatives and structured products04

03

02



For more information about our technologies or collaboration, please 
contact

Prof. Haksun Li

haksun.li@nmfin.tech

mailto:haksun.li@nmfin.tech

