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Abstract

This paper is concerned with the optimality of a trend following trading rule. The underlying
market is modeled as a bull-bear switching market in which the drift of the stock price switches
between two states: the uptrend (bull market) and the downtrend (bear market). Such switching
process is modelled as a hidden Markov chain. This is a continuation of our earlier study reported
in Dai et al. [5] where a trend following rule is obtained in terms of a sequence of stopping times.
Nevertheless, a severe restriction imposed in [5] is that only a single share can be traded over
time. As a result, the corresponding wealth process is not self-financing. In this paper, we relax
this restriction. Our objective is to maximize the expected log-utility of the terminal wealth. We
show, via a thorough theoretical analysis, that the optimal trading strategy is trend-following.
Numerical simulations and backtesting, in support of our theoretical findings, are also reported.
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1 Introduction

Traditional trading strategies can be classified into three categories: i) buy and hold; ii) contra-

trend, and iii) trend following. The buy-and-hold strategy is desirable when the average stock

return is higher than the risk-free interest rate. Recently Shiryaev et al. [22] provided a theoretical

justification of the buy and hold strategy from the angle of maximizing the expected relative error

between the stock selling price and the aforementioned maximum price. The contra-trend strategy,

on the other hand, focuses on taking advantages of mean reversion type of market behaviors. A

contra-trend trader purchases a stock when its price falls to some low level and bets an eventual

rebound. The trend following strategy tries to capture market trends. In contrast to the contra-

trend investors, a trend following believer often purchases shares when prices advance to a certain

level and closes the position at the first sign of upcoming bear market.

There is an extensive literature devoted to contra-trend strategies. For instance, Merton [18]

pioneered the continuous-time portfolio selection with utility maximization, which was subsequently

extended to incorporate transaction costs by Magil and Constantinidies [17] (see also Davis and

Norman [6], Shreve and Soner [23], Liu and Loeweinstein [16], Dai and Yi [4], and references

therein). Assuming that there is no leverage or short-selling, the resulting strategies turn out to

be contra-trend because the investor is risk averse and the stock market is assumed to follow a

geometric Brownian motion with constant drift and volatility. Recently Zhang and Zhang [29]

showed that the optimal trading strategy in a mean reverting market is also contra-trend. Other

work relevant to the contra-trend strategy includes Dai et al. [2], Song et al. [25], Zervors et al.

[28], among others.

This paper is concerned with a trend following trading rule. In practice, a trend following trader

often uses moving averages to determine the general direction of the market and generate trading

signals. Related research along the line of statistical analysis in connection with moving averages

can be found in, for example, [7] among others. Nevertheless, rigorous mathematical analysis is

absent. Recently, Dai et al. [5] provided a theoretical justification of the trend following strategy

in a bull-bear switching market and employed the conditional probability in the bull market to

generate trade signals. However, the work imposed a less realistic assumption widely used in

existing literature (e.g. [25], [28], and [29]): only one share of stock is allowed to be traded, so the

resulting wealth process is not self-financing. It is important to address how relevant the trading

rule is to practice. It is the purpose of this paper to deal with more realistic self-financing trading

strategies. Here we adopt an objective function emphasizing the percentage gains. As a result

the corresponding payoff has to account for the gain/loss percentage of each trade, which is also

desirable in actual trading. On the other hand, these more realistic considerations make the model

more technically involved than in the ‘single share’ transaction considered in [5].

Most existing literature in trading strategies assumes that the investor can observe full market

information (e.g. Jang et al. [11] and Dai et al. [3]). In contrast, we follow [5] to model the trends

in the markets using a geometric Brownian motion with regime switching and partial informa-

tion. More precisely, two regimes are considered: the uptrend (bull market) and downtrend (bear

market), and the switching process is modeled as a two-state Markov chain which is not directly

observable. We consider a finite horizon investment problem and aim to maximize the percentage

gains. We assume that the investor trades all available funds in the form of either “all-in” (long)

or “all-out” (flat). That is, when buying, one fills the position with the entire account balance and

when selling, one closes the entire position. We will show again that the optimal trading strategy
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is a trend following system characterized by the conditional probability over time and its up and

down crossings of two threshold curves. These thresholds can be obtained through solving a system

of associated HJB equations. Such a trading strategy naturally generates entry time and exit time

which can be mathematically described by stopping times. We also carry out numerical simulations

and market tests to demonstrate how the method works.

This work and Dai et al. [5] were initialized by an attempt to justify the technical analysis

with moving average. A moving average trading strategy is generally in “all in - all out” form but

is difficult to justify theoretically. This motivates us to design and justify an alternative “all in -

all out” strategy that is analogous to the moving average trading strategy. This work has been

recently extended to the Merton’s portfolio optimization problem by Chen et al. [1], where the

investor may choose an optimal fraction of wealth invested in stock.

In contrast to [5], the present paper provides not only a more reasonable modeling but also a

more thorough theoretical analysis. First, we remove a technical condition imposed in [5] when

proving the verification theorem. The key step is to show that the optimal trading strategy incurs

only a finite number of trades almost surely (Lemma 6). Second, since the solution to the resulting

HJB equation is not smooth enough to use the Itô lemma, we employ an approximation approach to

prove the verification theorem (Theorem 5). Third, we show that for the optimal trading strategy,

the upper limit involved in defining the reward function is, in fact, a limit (Theorem 8). Hence,

the definition of the reward function makes sense in practice. Last but not least, we find that

the theoretical characterization on the optimal trading strategy obtained in [5] remains valid for

the present model (Theorem 2). We further present sufficient conditions to examine whether or

not the optimal trading boundaries are attainable (Theorem 3 and Theorem 4). In spite that

these conditions are not sharp, our result reveals that under certain scenario, the optimal trading

boundaries are always attainable for sufficiently small transaction costs.

The rest of the paper is arranged as follows. Following the problem formulation in the next

section, Section 3 is devoted to a theoretical characterization of the optimal trading strategy in

a regime switching market. We report our simulation results and market tests in Section 4. We

conclude in Section 5. Some technical proofs are given in Appendix.

2 Problem Formulation

Consider a complete probability space (Ω,F , P ). Let Sr denote the stock price at time r satisfying

the equation

dSr = Sr[µ(αr)dr + σdBr], St = X, t ≤ r ≤ T < ∞, (1)

where αr ∈ {1, 2} is a two-state Markov chain, µ(i) ≡ µi is the expected return rate in regime

i = 1, 2, σ > 0 is the constant volatility, Br is a standard Brownian motion, and t and T are the

initial and terminal times, respectively. We assume that the stock does not pay any dividends. No

generality is lost because dividends, if exist, can be re-invested in the stock, then the dividends can

be reflected in the stock price.

The process αr represents the market mode at each time r: αr = 1 indicates a bull market

(uptrend) and αr = 2 a bear market (downtrend). In this paper, we make the realistic assumption

that αr is not directly observable. Let Q =

(
−λ1 λ1

λ2 −λ2

)
, (λ1 > 0, λ2 > 0), denote the generator
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of αr. So, λ1 (λ2) stands for the switching intensity from bull to bear (from bear to bull). We

assume that {αr} and {Br} are independent.

Due to the non-observability of αr, the decisions (of buying and selling) have to base purely on

the stock prices. Let Ft = σ{Sr : r ≤ t} denote the σ-algebra generated by the stock price. Let

t ≤ τ01 ≤ v01 ≤ τ02 ≤ v02 · · · ≤ τ0n ≤ v0n ≤ · · · , a.s.,

denote a sequence of Ft-stopping times. For each n, define

τn = min{τ0n, T} and vn = min{v0n, T}.

A buying decision is made at τn if τn < T and a selling decision is at vn if vn < T , n = 1, 2, . . ..

In addition, we require the liquidation of all long positions (if any) at the terminal time T .

We assume that the investor is taking an “all in - all out” strategy. This means that she is

either long so that her entire wealth is invested in the stock or flat so that all of her wealth is

in a bank account that draws the riskfree interest rate. We use indicator i = 0 or 1 to signify

the initial position to be flat or long, respectively. If initially the position is long (i.e, i = 1), the

corresponding sequence of stopping times is denoted by Λ1 = (v1, τ2, v2, τ3, . . .). Likewise, if initially

the net position is flat (i = 0), then the corresponding sequence of stopping times is denoted by

Λ0 = (τ1, v1, τ2, v2, . . .).

Let 0 < Kb < 1 denote the percentage of slippage (or commission) per transaction with a buying

order and 0 < Ks < 1 that with a selling order.

Let ρ ≥ 0 denote the risk-free interest rate. Given the initial time t, initial stock price St = S,

initial market trend αt = α, and initial net position i = 0, 1, the reward functions of the decision

sequences, Λ0 and Λ1, are the expected return rates of wealth:

Ji(S, α, t,Λi)

=



Et

{
log

eρ(τ1−t)
∞∏
n=1

eρ(τn+1−vn)Svn

Sτn

[
1−Ks

1 +Kb

]I{τn<T}
}

, if i = 0,

Et

{
log

[
Sv1

S
eρ(τ2−v1)(1−Ks)

] ∞∏
n=2

eρ(τn+1−vn)Svn

Sτn

[
1−Ks

1 +Kb

]I{τn<T}
}

,

if i = 1,

where IA represents the indicator function of A.

Remark 1 Note that different from the reward functions in [5], the above reward functions account

for percentage gain/loss of each trade. Between trades, the entire balance is in a risk-free asset

drawing interests at rate ρ. We only consider the control problem in the finite time horizon [0, T ].

This is signified by involving the indicator function I{τn<T} in the payoff function Ji. The meaning

of this indicator function is that a buying order at stopping time τn will be accounted only when

τn < T . If a long position remains at t = T , then it has to be sold at that time. Transactions at

t > T will not affect the payoff Ji.
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It is clear that

Ji(S, α, t,Λi)

=



Et

{
ρ(τ1 − t) +

∞∑
n=1

[
log

Svn

Sτn

+ ρ(τn+1 − vn) + log

(
1−Ks

1 +Kb

)
I{τn<T}

]}
, if i = 0,

Et

{[
log

Sv1

S
+ log(1−Ks) + ρ(τ2 − v1)

]

+

∞∑
n=2

[
log

Svn

Sτn

+ ρ(τn+1 − vn) + log

(
1−Ks

1 +Kb

)
I{τn<T}

]}
, if i = 1,

where the term Et

∞∑
n=1

ξn for random variables ξn is interpreted as lim supN→∞Et
∑N

n=1 ξn.

Remark 2 We will show in Section 3 that the optimal strategy can be given in terms of the

conditional probability in a bull market and two threshold levels. A buying (selling) decision is

triggered when the conditional probability in a bull market crosses these thresholds. Moreover, the

optimal strategy involves only a finite number of trades (see Lemma 6).

It is easy to see that one should never buy a stock if the riskfree rate is greater than the log-

return rate of stock in the bull market, i.e. ρ ≥ µ1− σ2

2 , and never sell the stock if the riskfree rate

is lower than the log-return rate of stock in the bear market, i.e., ρ ≤ µ2 − σ2

2 . To exclude these

trivial cases, we assume

µ2 −
σ2

2
< ρ < µ1 −

σ2

2
. (2)

Note that the market trend αr is not directly observable. Thus, it is necessary to convert the

problem into one that is observable. One way to accomplish this is to use the Wonham filter [27].

Let pr = P (αr = 1|Sr) denote the conditional probability in a bull market (αr = 1) given the

filtration Sr = σ{Su : 0 ≤ u ≤ r}. Then we can show (see Wonham [27]) that pr satisfies the

following SDE

dpr = [− (λ1 + λ2) pr + λ2] dr +
(µ1 − µ2)pr(1− pr)

σ
dB̂r, (3)

where B̂r is the innovation process (a standard Brownian motion; see e.g., Øksendal [19]) given by

dB̂r =
d log(Sr)− [(µ1 − µ2)pr + µ2 − σ2/2]dr

σ
. (4)

It is easy to see that Sr can be written in terms of B̂r:

dSr = Sr [(µ1 − µ2) pr + µ2] dr + SrσdB̂r. (5)

In view of this, the separation principle holds for the partially observed optimization problem.

The problem is to choose Λi to maximize the discounted return Ji subject to (3) and (5). We

emphasize that this new problem is completely observable because pr, the conditional probability

in a bull market, can be obtained by using the stock price up to time r.
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Note that the reward function Ji only accounts for the percentage gain/loss. For any given τn
and vn, we have

log
Svn

Sτn

=

∫ vn

τn

f(pr)dr +

∫ vn

τn

σdB̂r, (6)

where

f(pr) = (µ1 − µ2)pr + µ2 −
σ2

2
. (7)

Note also that

Et

∫ vn

τn

σdB̂r = 0. (8)

Therefore, the reward function Ji is independent of the initial stock price S. Consequently, given

pt = p, we can rewrite the reward function as

Ji = Ji(p, t,Λi).

For i = 0, 1, let Vi(p, t) denote the value function with the state p at time t. That is,

Vi(p, t) = sup
Λi

Ji(p, t,Λi). (9)

The following lemma gives the bounds of the value functions.

Lemma 1 Let Vi(p, t), i = 1, 2 be the value functions defined in (9). We have

ρ(T − t) ≤ V0(p, t) ≤
(
µ1 −

σ2

2

)
(T − t)

and

log(1−Ks) + ρ(T − t) ≤ V1(p, t) ≤ log(1−Ks) +

(
µ1 −

σ2

2

)
(T − t).

Proof. It is clear that the lower bounds for Vi follow from their definition. It remains to estimate

their upper bounds. Using (6) and (8) and noticing 0 ≤ pr ≤ 1, we have

Et

(
log

Svn

Sτn

)
= Et

[∫ vn

τn

f(pr)dr

]
≤

(
µ1 −

σ2

2

)∫ vn

τn

dr =

(
µ1 −

σ2

2

)
(vn − τn).

Note that log(1−Ks) < 0 and log(1 +Kb) > 0. It follows that

J0(p, t,Λ0) ≤ Et

{
ρ(τ1 − t) +

∞∑
n=1

[(
µ1 −

σ2

2

)
(vn − τn) + ρ(τn+1 − vn)

]}

≤ max

{
ρ, µ1 −

σ2

2

}
(T − t) =

(
µ1 −

σ2

2

)
(T − t),

where the last equality is due to (2). We then obtain the desired result. An upper bound for V1

can be established similarly. 2
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Next, we consider the associated Hamilton-Jacobi-Bellman equations. Using the dynamic pro-

gramming principle, one has

V0(p, t) = sup
τ1≥t

Et {ρ(τ1 − t)− log(1 +Kb) + V1(pτ1 , τ1)}

and

V1(p, t) = sup
v1≥t

Et

{∫ v1

t
f(ps)ds+ log(1−Ks) + V0(pv1 , v1)

}
,

where f(·) is as given in (7). Let

L = ∂t +
1

2

(
(µ1 − µ2)p(1− p)

σ

)2

∂pp + [− (λ1 + λ2) p+ λ2] ∂p

denote the generator of (t, pt). Then, the associated HJB equations are{
min{−LV0 − ρ, V0 − V1 + log(1 +Kb)} = 0,
min{−LV1 − f(p), V1 − V0 − log(1−Ks)} = 0,

(10)

with the terminal conditions {
V0(p, T ) = 0,
V1(p, T ) = log(1−Ks).

(11)

Using the same technique as in Dai et al. [5], we can show that Problem (10)-(11) has a

unique bounded strong solution (V0, V1), where Vi ∈ W 2,1
q ([ε, 1 − ε] × [0, T ]), for any ε ∈ (0, 1/2),

q ∈ [1,+∞). It should be pointed out that the differential operator L is degenerate at p = 0, 1 and

the solution is only locally bounded in W 2,1
q .

Remark 3 In this paper, we restrict the state space of p to (0, 1) because both p = 0 and p = 1 are

entrance boundaries (see Karlin and Taylor [12] and Dai et al. [5] for definition and discussions).

Now we define the buy region (BR), the sell region (SR), and the no-trading region (NT ) as

follows:

BR = {(p, t) ∈ (0, 1)× [0, T ) : V1(p, t)− V0(p, t) = log(1 +Kb)} ,
SR = {(p, t) ∈ (0, 1)× [0, T ) : V1(p, t)− V0(p, t) = log (1−Ks)} ,
NT = (0, 1)× [0, T )� (BR ∪ SR) .

To study the optimal strategy, we only need to characterize these regions.

3 Main results

In this section, we present the main theoretical results.
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3.1 Characterization of the optimal trading strategy

Let

p0 =
ρ− µ2 + σ2/2

µ1 − µ2
, a = log

1 +Kb

1−Ks
. (12)

Theorem 2 There exist two monotonically increasing boundaries p∗s(t), p
∗
b(t) : [0, T ) → [0, 1] such

that

SR = {(p, t) ∈ (0, 1)× [0, T ) : p ≤ p∗s(t)}, (13)

BR = {(p, t) ∈ (0, 1)× [0, T ) : p ≥ p∗b(t)}. (14)

Moreover,

i) p∗b(t) ≥ p0 ≥ p∗s(t) for all t ∈ [0, T );

ii) lim
t→T−

p∗s(t) = p0;

iii) there is a δ >
a

µ1 − ρ− σ2/2
such that p∗b(t) = 1 for t ∈ (T − δ, T );

iv) p∗s(t), p
∗
b(t) ∈ C∞ if p∗s(t), p

∗
b(t) ∈ (0, 1).

Proof. Denote Z(p, t) ≡ V1(p, t)− V0(p, t). Similar to Lemma 2.2 in [5], we can show that Z(p, t)

satisfies the following double obstacle problem:

min {max {−LZ − f (p) + ρ, Z − log (1 +Kb)} , Z − log(1−Ks)} = 0, (15)

in (0, 1)× [0, T ), with the terminal condition Z(p, T ) = log (1−Ks) , and{
−LV0 = ρ+ (−LZ − f (p) + ρ)− = ρI{Z<log(1+Kb)} + f(p)I{Z=log(1+Kb)},

V0(p, T ) = 0,
(16)

{
−LV1 = f(p) + (−LZ − f (p) + ρ)+ = f(p)I{Z>log(1−Ks)} + ρI{Z=log(1−Ks)},

V1(p, T ) = log(1−Ks).
(17)

Then we can use the same argument as in the proof of Theorem 2.5 in [5] to obtain the desired

results. 2

We call p∗s(t) (p
∗
b(t)) the optimal sell (buy) boundary. To see better how Theorem 2 works, we

provide a numerical result for illustration. In Figure 1, we plot the optimal sell and buy bound-

aries against time, where the parameter values used are λ1 = 0.36, λ2 = 2.53, µ1 = 0.18, µ2 =

−0.77, σ = 0.184, Kb = Ks = 0.001, ρ = 0.0679, and T = 1. It can be seen that p∗s(t) and p∗b(t) are

almost flat except when t is close to T where they sharply increase with t. Moreover, the sell bound-

ary p∗s(t) approaches the theoretical value p0 =
ρ− µ2 + σ2/2

µ1 − µ2
=

0.0679 + 0.77 + 0.1842/2

0.18 + 0.77
= 0.9, as

t → T = 1. Between the two boundaries is the NT, above the buy boundary is the BR, and below

the sell boundary is the SR. Also, we observe that there is a δ such that p∗b(t) = 1 for t ∈ [T − δ, T ],

which indicates that it is never optimal to buy stock when t is very close to T . Using Theorem 2,

the lower bound of δ is estimated as

a

µ1 − ρ− σ2/2
=

log(1.001/0.999)

0.18− 0.0657− 0.1842/2
= 0.021,
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Figure 1: Optimal buy and sell bounaries
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(t)

Parameter values: λ1 = 0.36, λ2 = 2.53, µ1 = 0.18, µ2 = −0.77, σ = 0.184, Kb = Ks = 0.001, ρ =
0.0679, T = 1.

which is consistent with the numerical result.

The behavior of the thresholds p∗s(·) and p∗b(·) when t approaches T is due to our technical

requirement of liquidating all the positions at T . Interested in long-term investment, we will

approximate these thresholds, as in [5], by constants p∗s = lim
T−t→∞

p∗s(t) and p∗b = lim
T−t→∞

p∗b(t). As-

suming that the initial position is flat and the initial conditional probability p(0) ∈ (p∗s, p
∗
b), our

trading strategy can be described as follows: as pt goes up to hit p∗b , we take a long position, that

is, investing all the wealth in the stock. We will close out the position only when pt goes down and

hits p∗s. According to (3)-(4), we have

dpr = g(pr)dr +
(µ1 − µ2)pr(1− pr)

σ2
d logSr, (18)

where

g(p) = − (λ1 + λ2) p+ λ2 −
(µ1 − µ2)pt(1− pt)

(
(µ1 − µ2)p+ µ2 − σ2/2

)
σ2

.

Relation (18) implies that pt, the conditional probability in the bull market, increases (decreases)

as the stock price goes up (down). Hence, our optimal trading strategy buys while the stock price

is going up and sells when the stock price declines. In other words, it is trend-following in nature.

We have seen from Proposition 2 that both the buy and sell boundaries are increasing with

time and that the buy (sell) boundary boundary is bounded from below (above) by p0. Note that

p = 0 and p = 1 are entrance boundaries that cannot be reached from the interior of the state space

(see Remark 2 in Dai et al. [5]). A natural question is whether or not the sell (buy) boundary can

coincide with p = 0 (p = 1). The following theorem provides an affirmative answer and sufficient

conditions.

Theorem 3 Let p0 and a be given as in (12).

i) If

p0 < min

{
1

3
,

λ2

6(λ1 + λ2)

}
(19)

and
p0

λ2
12(µ1−µ2)p0

− λ1+λ2
2(µ1−µ2)

≤ a ≤ p0
9(µ1−µ2)

σ2 + 2+6λ1
µ1−µ2

, (20)
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then

p∗s(t) ≡ 0, ∀ t ≤ T − 1

p0
− 12p0

λ2
.

ii) If λ1 > λ2 and

p0 ≥ 1−min

[
1

3
,

λ1 − λ2

6(λ1 + λ2)
,
σ2 (λ1 + λ2)

18(µ1 − µ2)2

]
, a ≥ σ2(1− p0)

µ1 − µ2
, (21)

then

p∗b(t) ≡ 1, ∀ t < T.

The proof of Theorem 3 relies on a technical partial different equation approach and is postponed

to Appendix.

Figure 2 below illustrates situations where the parameter values do satisfy the conditions in

Theorem 3. In Figure 2(a), the sell boundary coincides with the entrance boundary p = 0 before

t = 0.98. Hence, one should never sell stock except when t is very close to 1. In Figure 2(b), the

buy boundary remains at the entrance boundary p = 1, which means that one should never buy

any stock.

Figure 2: Scenarios of p∗s(t) = 0, p∗b(t) ≡ 1
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Parameter values. Case (a): λ1 = 0.2, λ2 = 30, µ1 = 0.15, µ2 = 0.1, σ = 0.2, Kb = Ks =
0.0006, ρ = 0.085, T = 1; Case (b): λ1 = 20, λ2 = 1, µ1 = 0.2, µ2 = 0, σ = 0.45, Kb = Ks =
0.05, ρ = 0.08, T = 1.

Now we present a sufficient condition to ensure that both the sell boundary and the buy bound-

ary are attainable when t is not close to the terminal time T .

Theorem 4 Let p0 and a be as given in (12). If p0 <
1
3 and

a ≤ min

 p0
9(µ1−µ2)

σ2 + 2+6λ1
µ1−µ2

,
p0

8(µ1−µ2)
σ2 + 16λ2

(µ1−µ2)p0

 , (22)

then

p∗s(t) > 0, p∗b(t) < 1, ∀ t ≤ T − 1

p0
.



11

Again we postpone the technical proof to Appendix.

The conditions in Theorem 4 is not sharp. However, condition (22) always holds if the trans-

action costs are sufficiently small. We also emphasize that the conditions presented in Theorem 4

are sufficient but not necessary. In fact, our numerical tests reveal that for reasonable parameter

values, the sell and buy boundaries are strictly between (0,1) when t is not close to the terminal

time T .

3.2 A verification theorem

We now present a verification theorem, indicating that the solutions V0 and V1 of problem (10)-(11)

are equal to the value functions and sequences of optimal stopping times can be constructed by

using (p∗s, p
∗
b).

Theorem 5 (Verification Theorem) Let (w0(p, t), w1(p, t)) be the unique solution to problem (10)-

(11) and p∗b(t) and p∗s(t) be the associated free boundaries, where wi ∈ W 2,1
q ([ε, 1−ε]×[0, T ]), i = 0, 1,

for any ε ∈ (0, 1/2), q ∈ [1,+∞). Then, w0(p, t) and w1(p, t) are equal to the value functions V0(p, t)

and V1(p, t), respectively.

Moreover, let

Λ∗
0 = (τ∗1 , v

∗
1, τ

∗
2 , v

∗
2, · · · ),

where the stopping times τ∗1 = T ∧ inf{r ≥ t : pr ≥ p∗b(r)}, v∗n = T ∧ inf{r ≥ τ∗n : pr ≤ p∗s(r)}, and
τ∗n+1 = T ∧ inf{r > v∗n : pr ≥ p∗b(r)} for n ≥ 1, and let

Λ∗
1 = (v∗1, τ

∗
2 , v

∗
2, τ

∗
3 , · · · ),

where the stopping times v∗1 = T ∧ inf{r ≥ t : p∗r ≤ p∗s(r)}, τ∗n = T ∧ inf{r > v∗n−1 : pr ≥ p∗b(r)},
and v∗n = T ∧ inf{r ≥ τ∗n : pr ≤ p∗s(r)} for n ≥ 2. Then Λ∗

0 and Λ∗
1 are optimal.

It should be pointed out that a technical condition v∗n → T is needed in [5] to prove the

verification theorem, while we remove such a condition in the present paper. In addition, the

solution to problem (10)-(11) is not smooth enough to use the Itô lemma. We will employ an

approximation approach to overcome this difficulty. Note that one cannot directly utilize the

results of [14] which are for a stationary problem.

Before proving Theorem 5, we introduce two lemmas. The first indicates that the optimal

trading strategy incurs only a finite number of trades almost surely.

Lemma 6 Let v∗n, τ
∗
n be as given in Theorem 5. Define

N = inf{n : v∗n = T or τ∗n+1 = T} and inf Ø = +∞.

Then there exists a constant C such that

E(N ) ≤ C.

In particular, N (ω) is finite almost surely. In other words, for fixed path, v∗n = τ∗n = T when n is

large enough.
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Proof. Recalling p∗b(r) ≥ p0 ≥ p∗s(r), p
∗
s, p

∗
b ∈ C∞(0, T ) (see Theorem 2), and

V1(r, p
∗
b(r))− V0(r, p

∗
b(r)) = log(1 +Kb) > log(1−Ks) = V1(r, p

∗
s(r))− V0(r, p

∗
s(r)),

we deduce that p∗b(r) > p∗s(r) and there is a δ > 0 such that

p∗b(r)− p∗s(r) > 4δ.

Denote

P 1
r = p+

∫ r

t

[
− (λ1 + λ2)pu + λ2

]
du− p∗s(r), P 2

r =

∫ r

t

(µ1 − µ2)pu(1− pu)

σ
dB̂u,

where P 1 is an absolutely continuous stochastic process and P 2 is a martingale. Apparently

P 1
r + P 2

r = pr − p∗s(r). (23)

Since stochastic process p has continuous paths, the definitions of p∗s, p
∗
b imply that

(P 1
τ∗n

− P 1
v∗n−1

) + (P 2
τ∗n

− P 2
v∗n−1

) = (P 1
τ∗n

+ P 2
τ∗n
)− (P 1

v∗n−1
+ P 2

v∗n−1
)

= (pτ∗n − p∗s(τ
∗
n))− (pv∗n−1

− p∗s(v
∗
n−1))

= p∗b(τ
∗
n)− p∗s(τ

∗
n) > 4δ.

Hence, we deduce

either P 1
τ∗n

− P 1
v∗n−1

> 2δ or P 2
τ∗n

− P 2
v∗n−1

> 2δ. (24)

On the other hand, P 1 is clearly bounded since pr, p
∗
b(r) ∈ [ 0, 1 ]. Owing to (23), we infer that

P 2 is bounded as well. Hence, we can choose a positive integer M such that

|P 2| ≤ Mδ.

If P 2
τ∗n

− P 2
v∗n−1

> 2δ, then the continuity of P 2 implies that the martingale P 2 should cross upward

at least one of the intervals [ iδ, (i+ 1)δ ] (i = −M,−M + 1, ·, ·, ·,M − 1) during [v∗n−1, τ
∗
n].

Hence, by virtue of (24), we deduce that

N ≤
M−1∑
i=−M

U[ iδ, (i+1) δ ](P
2) + U2δ(P

1), (25)

where U[ iδ, (i+1) δ ](P
2) denotes the number of crossing upward the interval [ iδ, (i + 1) δ ] for P 2

during [ 0, T ], and U2δ(P
1) denotes the number of crossing upward a 2δ-length interval for P 1

during [ 0, T ]. In view of the inequality for crossing upward, we infer

E(U[ iδ, (i+1) δ ](P
2)) ≤ 1

δ

(
E(|P 2|) + |iδ|

)
≤ 1

δ
E(|P 2|) +M ≤ C

4M
, (26)

where C is a constant large enough. Since pr ∈ [ 0, 1 ] and p∗s is increasing, it is easy to see

U2δ(P
1) ≤ C

2
. (27)

The combination of (25), (26), and (27) yields the desired result. 2

Our next lemma indicates that the solution to problem (10)-(11) has the same bounds as the

value function (see Lemma 1).
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Lemma 7 Let (w0(p, t), w1(p, t)) be the solution to problem (10)-(11). Then

ρ(T − t) ≤ w0(p, t) ≤
(
µ1 −

σ2

2

)
(T − t)

and

log(1−Ks) + ρ(T − t) ≤ w1(p, t) ≤ log(1−Ks) +

(
µ1 −

σ2

2

)
(T − t).

Proof. Clearly

−L(w0 − ρ(T − t)) = −Lw0 − ρ ≥ 0,

from which we immediately infer by the maximum principle w0 ≥ ρ(T − t). Owing to w1 − w0 −
log(1−Ks) ≥ 0, we have w1 ≥ log(1−Ks) + ρ(T − t).

To prove the right hand side inequalities, we utilize (16) and (17) to get

−Lw0 ≤ max{ρ, f(p)} ≤ µ1 −
σ2

2
,

−Lw1 ≤ max{ρ, f(p)} ≤ µ1 −
σ2

2
.

Again by the maximum principle, the desired result follows. 2

Now we are ready to prove the verification theorem.

Proof of Theorem 5. First, we show that for any stopping times θ2 ≥ θ1 ≥ t,

Etw1(pθ1 , θ1) ≥ Et

[ ∫ θ2

θ1

f(pr)dr + w1(pθ2 , θ2)

]
= Et

[
log

Sθ2

Sθ1

+ w1(pθ2 , θ2)

]
a.s. (28)

Since w1 is only locally bounded in W 2,1
q ((0, 1)× [0, T ]), we cannot directly use the Itô formula.

To overcome the difficulty, we introduce the following stopping times:

βm = inf{r ≥ θ1 : pr ∈ (0, 1/m) ∪ (1− 1/m, 1)} ∧ θ2, m = 1, 2, · · ·.

Note that p = 0 and p = 1 cannot be reached from the interior of (0, 1) (see Remark 2 in [5]). We

then infer that βm → θ2 as m → ∞.

Due to w1 ∈ W 2,1
q ([1/m, 1 − 1/m] × [0, T ]), applying the Itô formula to w1(pr, r) in [θ1, βm]

yields (c.f. [13])

w1(pθ1 , θ1) = w1(pβm , βm)−
∫ βm

θ1

Lw1(pr, r)dr −
∫ βm

θ1

∂pw1(pr, r)
(µ1 − µ2)pr(1− pr)

σ
dB̂r a.e.

By the Sobolev embedding theory, ∂pw1 ∈ C([1/m, 1 − 1/m] × [0, T ]), which implies that the last

term in the above equation is a martingale. Taking conditional expectation in the above equation,

we deduce that

Etw1(pθ1 , θ1) = Et

[
w1(pβm , βm)−

∫ βm

θ1

Lw1(pr, r)dr

]
. (29)

Owing to w0, w1 ∈ W 2,1
q, loc, we can rewrite

Lw1 = −f(p)I{w1>w0+log(1−Ks)} + L(w0 + log(1−Ks))I{w1=w0+log(1−Ks)}

= −f(p)I{w1>w0+log(1−Ks)} − ρI{w1=w0+log(1−Ks)}.
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Hence

E

[ ∫ T

0
|Lw1(pr, r) | dr

]
< ∞. (30)

Sending m → ∞ in (29) and using (30) and Lemma 7, we have by the dominated convergence

theorem

Etw1(pθ1 , θ1) = Et

[
−
∫ θ2

θ1

Lw1(pr, r)dr + w1(pθ2 , θ2)

]
a.s.

Using −Lw1 − f(p) ≥ 0, we then obtain (28). In a similar way we can show

Etw0(pθ1 , θ1) ≥ Et[ ρ(θ2 − θ1) + w0(pθ2 , θ2) ] a.s. (31)

We next show, for any Λ1 and k = 1, 2, . . .,

Etw0(pvk , vk) ≥ Et

[
ρ(τk+1 − vk) + log

Svk+1

Sτk+1

+w0(pvk+1
, vk+1) + (log(1−Ks)− log(1 +Kb))I{τk+1<T}

]
.

(32)

In fact, using (28) and (31) and noticing that

w0 ≥ w1 − log(1 +Kb) and w1 ≥ w0 + log(1−Ks),

we have

Etw0(pvk , vk)
≥ Et[ρ(τk+1 − vk) + w0(pτk+1

, τk+1)]
≥ Et[ρ(τk+1 − vk) +

(
w1(pτk+1

, τk+1)− log(1 +Kb)
)
I{τk+1<T}]

≥ Et[ρ(τk+1 − vk) +

(
log

Svk+1

Sτk+1

+ w1(pvk+1
, vk+1)− log(1 +Kb)

)
I{τk+1<T}]

≥ Et[ρ(τk+1 − vk) +

(
log

Svk+1

Sτk+1

+ w0(pvk+1
, vk+1) + log(1−Ks)− log(1 +Kb)

)
I{τk+1<T}]

= Et[ρ(τk+1 − vk) + log
Svk+1

Sτk+1

+ w0(pvk+1
, vk+1) + (log(1−Ks)− log(1 +Kb)) I{τk+1<T}].

Note that the above inequalities also work when starting at t in lieu of v1, i.e.,

w0(pt, t) ≥ Et

[
ρ(τ1 − t) + log

Sv1

Sτ1

+ w0(pv1 , v1) + (log(1−Ks)− log(1 +Kb))I{τ1<T}

]
.

Use this inequality and iterate (32) with k = 1, 2, . . ., and note w0 ≥ 0 to obtain

w0(p, t) ≥ V0(p, t).

Similarly, we can show that

w1(pt, t) ≥ Et

[
log

Sv1

St
+ w1(pv1 , v1)

]
≥ Et

[
log

Sv1

St
+ w0(pv1 , v1) + log(1−Ks)

]
.

Use this and iterate (32) with k = 1, 2, . . . as above to obtain

w1(p, t) ≥ V1(p, t).
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By Lemma 6, we immediately obtain v∗k, τ
∗
k → T as k → ∞. It can be seen that the equalities

hold when τk = τ∗k and vk = v∗k. This completes the proof. 2

We conclude this section by showing that for the optimal trading strategy, the limsup in the

reward function defined in Section 2 is, in fact, a limit. Hence, the definition of the reward function

makes sense in practice.

Theorem 8 The limit of E[Θ(m)] as m tends infinity exists, where

Θ(m) =
m∑

n=1

[
log

Sv∗n

Sτ∗n

+ ρ(τ∗n+1 − v∗n) + log

(
1−Ks

1 +Kb

)
I{τ∗n<T}

]
.

Proof. Lemma 6 implies that for fixed path, τn = vn = T for n large enough. So the sum is finite

a.s., and limm→∞Θ(m) exists a.s.

Next, we estimate the bound of Θ(m). Similar to the proof of Lemma 1, we can obtain

Θ(m) ≤
(
µ1 −

σ2

2

)
(T − t).

Using the same argument as in the proof of Lemma 1, we have

m∑
n=1

[
log

Sv∗n

Sτ∗n

+ ρ(τ∗n+1 − v∗n)

]
≥

(
µ2 −

σ2

2

)
(T − t).

Moreover, it is clear that

m∑
n=1

log

(
1−Ks

1 +Kb

)
I{τ∗n<T} ≥ log

(
1−Ks

1 +Kb

)
N for any m.

Lemma 6 implies that

E
[(

µ2 −
σ2

2

)
(T − t) + log

(
1−Ks

1 +Kb

)
N

]
exists. The convergence of E[Θ(m)] follows from the Lebesgue dominated convergence theorem.

2

4 Simulation and market tests

In this section, we carry out numerical simulations and backtesting to examine the effectiveness of

our trading strategy. To estimate pt, the conditional probability in a bull market, we use a discrete

version of the stochastic differential equation (18), for t = 0, 1, . . . , N with dt = 1/252,

pt+1 = min

(
max

(
pt + g(pt)dt+

(µ1 − µ2)pt(1− pt)

σ2
log(St+1/St), 0

)
, 1

)
, (33)

where the price process St is determined by the simulated paths or the historical market data. The

min and max are added to ensure the discrete approximation pt of the conditional probability in

the bull market stays in the interval [0, 1].
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4.1 Simulations

For simulation we use the parameters given in Table 1. These numbers were used in [5]. The time

horizon is 40 years.

λ1 λ2 µ1 µ2 σ K ρ

0.36 2.53 0.18 -0.77 0.184 0.001 0.0679

Table 1. Parameter values

We solve the HJB equations and derive p∗s = 0.796 and p∗b = 0.948. We run the 5000 round

simulations for 10 times. Starting with $1, the mean of the total/annualized return and the standard

deviation are given in Table 2. The trend following strategy clearly outperforms the buy and hold

in terms of return. Moreover, the trend following strategy has a monthly Sharp ratio of 0.22 while

the return of the buy and hold strategy is lower than the riskfree rate ρ = 0.0679.

Trend Following Buy and Hold No. of Trades

Mean 75.76(11.4%) 5.62(4.4%) 41.16

Stdev 2.48 0.39 0.29

Table 2. Statistics of ten 5000-path simulations

Comparing to the simulation results in [5] we only observe a slight improvement in terms of the

ratio of mean return of the trend following strategy to that of the buy and hold strategy. However,

the improvement is not significant enough to distinguish statistically from the results in [5] despite

theoretically the present paper is more solid than [5]. Together with sensitivity tests on thresholds

conducted in [5], this reveals that using the conditional probability in the bull market as trade

signals is rather robust against the change of thresholds. It is analogous to the scenario when

technical analysis is used: the effects of using 200-day moving average and 150-day moving average

as trade signals are likely comparable.

The above simulation results are based on the average outcomes of large numbers of simulated

paths. We now investigate the performance of our strategy with individual sample paths. Table 3

collects simulation results on 10 single paths using buy-sell thresholds p∗s = 0.795 and p∗b = 0.948

with the same data given in Table 1. We can see that the simulation is very sensitive to individual

paths. Nevertheless, on large number of trials our strategy clearly outperforms the buy and hold

strategy statistically.

Note that this observation is consistent with the measurement of an effective investment strategy

in marketplace. For example, O’Neil’s CANSLIM works during a period of time does not mean it

works on each stock when applied. How it works is measured based on the overall average when
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applied to a group of stocks fitting the prescribed selection criteria.

Trend Following Buy and Hold No. of Trades

67.080 3.2892 36.000
24.804 2.2498 42.000
22.509 0.40591 42.000
1887.8 257.75 33.000
26.059 0.16373 48.000
60.267 1.5325 43.000
34.832 5.7747 42.000
8.6456 0.077789 46.000
128.51 30.293 37.000
224.80 29.807 40.000

Table 3. Ten single-path simulations

4.2 Market tests

We now turn to the question whether the trend following trading strategy presented works in real

markets. In view of the path sensitivity discussed in the end of the last section we conduct our tests

using a broad based stock index which reflects the aggregation of the behaviors of a large number

of stocks. While ex-post tests are employed in [5], we conduct the ex-ante tests for the SP500 index

– a broad based index that has a set of accessible historical data reasonably long for our tests.

Our goal is evaluating whether our theoretically optimal trend following strategy provides useful

guidance in real market.

The historical data for SP500 is available since 1962. We assume that any trading action will

take place at the close of the market and, therefore, will use the SP500 daily closing price for our

test. We define an up trend to be rally at least 20% and a down trend decline at least 20%. For

any giving period of the SP500 historical data, say 5 or 10 years, one can find several up and down

trends. We can use the statistics of the duration and total appreciation/depreciation of these trends

to empirically calibrate the parameters µi, λi, i = 1, 2 and σ. However, after quickly scanning several

such periods of data we find that the empirical estimate of these parameters is quite different in

different time periods. The change of the parameters, of course, is not unanticipated. Many social,

economic and technological factors contribute to such a change and make it difficult to precisely

predict. However, these exogenous impacts on the parameters happen over time. Thus, we make

the following working assumptions: (a) the parameters gradually change over a long time horizon

(say 10 years) yet they are relatively stable in a short time horizon (say 1 year) and (b) recent

data is more relevant compared to the data in the distant past. Base on these assumptions we

determine the parameters by beginning with the statistical estimate of the 10 year data from 1962

to 1972 as follows: µ1 and λ1 are estimated as the average of annualized return and reciprocal of

the length of the up trends and µ2 and λ2 are the average of annualized return and reciprocal of

the length of the down trends. We conduct the trend following strategy using these parameters

and the corresponding thresholds in the following year and then update the parameters and the

corresponding thresholds at the beginning of a new year using the new data that become available

if a new up or down trend is completed. To reflect assumption (b), we update the parameters using

the so called exponential average method in which the update of the parameters is determined by
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Figure 3: Trend following trading of SP500 1972–2011 compared with buy and hold

the old parameters and new parameters with formula

update = (1− 2/N)old + (2/N)new,

where we chose N = 6 based on the number of up and down trends between 1962–1972. The

exponential average allows us to overweight the recent information while avoiding unwanted abrupt

changes due to dropping old information. Then we use the yearly updated parameters to calculate

the corresponding thresholds. Finally, we use these parameters and thresholds to test the SP500

index from 1972-2011. The equity curve of the trend following strategy is compared to the buy

and hold strategy in the same period of time in Figure 3. The upper, middle and the lower curves

represent the equity curves of the trend following strategy, the buy and hold strategy including

dividend, and the SP500 index without dividend adjustment, respectively.

As we can see, the trend following strategy not only outperforms the buy and hold strategy in

total return, but also has a smoother equity curve, which means a higher Sharpe ratio; see Table 4.

Index(time frame) TF TF Sharpe BH BH Sharpe 10 year bonds

SP500 (1972-2011) 11.03% 0.217 9.8% 0.128 6.79%

Table 4. Testing results for trend following trading strategies

The test result for SP500 here is, if not better, at least comparable to the ex-pose test in [5]

showing that trends indeed exist in the price movement of SP500. It is worthwhile pointing out

that in [5], there is a mistake that the dividends are not treated as reinvestment. As a correction,

the returns of the buy and hold strategy and the trend following strategy in [5] (Table 10) should

be respectively 54.6 and 70.9, instead of 33.5 and 64.98, for SP500 (1962-2008).

We note that although an index such as the SP500 reflects the aggregation of the behavior

of many individual stocks, trading it with the trend following strategy could still experience an

instability as observed in the end of last section. Using the trend following strategy simultaneously

on a large number of stocks should smooth out the fluctuation of the performance and achieve better

stability. In spite that such tests belong to the area of developing proprietary trading strategies

and do not fall in the scope of this paper, the testing methods used here are relevant and useful.
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5 Conclusion

We have considered a finite horizon investment problem in a bull-bear switching market, where

the drift of the stock price switches between two parameters corresponding to an uptrend (bull

market) and a downtrend (bear market) according to an unobservable Markov chain. The goal is

to maximize the expected log-utility of the terminal wealth. We restricted attention to allowing

flat and long positions only and used a sequence of stopping times to indicate the time of entering

and exiting long positions. We have shown that the optimal trading strategy is trend following,

characterized by the conditional probability in the uptrend crossing the buy and sell boundaries.

Regarding future research, it would be interesting to see how the approach works in models

with more than two states, e.g., (bull, bear, sideways markets). In addition, substantial empirical

tests on much broader selections of stocks will be useful to reveal when the trend following method

works and when it fails in the marketplace.

6 Appendix

Proof of Theorem 3.

i) First we prove

Z(p, t) ≡ log(1 +Kb), ∀ p ≥ 3p0, 0 ≤ t ≤ T − 1/p0. (34)

Let us construct a function:

Z1 =

{
−a[(p− 2p0)(T − t)− 1]2 + log(1 +Kb), 2p0 ≤ p ≤ min{2p0 + 1

T−t , 1};

log(1 +Kb), min{2p0 + 1
T−t , 1} < p ≤ 1.

We claim that Z1 is a subsolution of (15) in (2p0, 1)× (T − 1/p0, T ). Indeed,

Z1

(
2p0 +

1

T − t
, t

)
= log(1 +Kb), ∂pZ1

(
2p0 +

1

T − t
, t

)
= 0, ∀ 2p0 +

1

T − t
≤ 1.

So, Z1 ∈ W 2, 1
q ((2p0, 1)× (0, T )). Moreover, for 2p0 ≤ p ≤ min{2p0+ 1

T−t , 1} and T −1/p0 ≤ t ≤ T ,

we have

−LZ1 = −2a(p− 2p0)[(p− 2p0)(T − t)− 1] +
a(µ1 − µ2)

2p2(1− p)2(T − t)2

σ2

−2aλ1p(T − t)[(p− 2p0)(T − t)− 1] + 2aλ2(T − t)[(p− 2p0)(T − t)− 1](1− p)

≤ 2a+
a(µ1 − µ2)

2[ (p− 2p0)
2 + 4p0(p− 2p0) + 4p20) ](1− p)2(T − t)2

σ2

+2aλ1[(p− 2p0) + 2p0](T − t)[1− (p− 2p0)(T − t)],

where the inequality is due to 0 ≤ p− 2p0 ≤ 1 and −1 ≤ (p− 2p0)(T − t)− 1 ≤ 1
T−t(T − t)− 1 ≤ 0.

Noticing that 0 ≤ 1− p ≤ 1, 0 ≤ (p− 2p0)(T − t) ≤ 1, and 0 ≤ p0(T − t) ≤ 1, we then deduce

−LZ1 ≤ 2a+
a(µ1 − µ2)

2(1 + 4 + 4)

σ2
+ 2aλ1(1 + 2)

=

[
2 +

9(µ1 − µ2)
2

σ2
+ 6λ1

]
a

≤ (µ1 − µ2)p0,
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where the last inequality is due to the right hand side condition in (20). It is clear that for any

min{2p0 + 1
T−t , 1} ≤ p ≤ 1, we have

−LZ1 = −L(log(1 +Kb)) = 0 ≤ (µ1 − µ2)p0.

On the other hand, in the domain M , {(p, t) ∈ [2p0, 1) × [T − 1/p0, T ] : Z(p, t) < log(1 +Kb)},
one has

−LZ ≥ f(p)− ρ ≥ f(2p0)− ρ = (µ1 − µ2)p0 ≥ −LZ1.

Apparently,

Z1(2p0, t) = log(1−Ks) ≤ Z(2p0, t), Z1(p, T ) = log(1−Ks) ≤ Z(p, T ).

Using the maximum principle in the domain M, we infer Z ≥ Z1 in [ 2p0, 1) × [T − 1/p0, T ]. In

particular,

Z(3p0, T − 1/p0) ≥ Z1(3p0, T − 1/p0) = log(1 +Kb).

It is not hard to show that Z(p, t) is decreasing with respect to t and increasing with respect to p.

We then obtain (34).

Consider another function:

Z = log(1−Ks) +
a

6p0

[
p− 3p0 +

λ2

2

(
T − 1

p0
− t

)]
in N ,

where N ∆
= (0, 3p0)× (T − 1/p0 − 12p0/λ2, T − 1/p0). We now show that Z is a subsolution of (15)

in N . It is easy to verify

∂tZ < 0, ∂pZ > 0, Z(3p0, T − 1/p0 − 12p0/λ2) = log(1 +Kb), Z < log(1 +Kb) in N .

Moreover,

−LZ =
a

6p0

[
(λ1 + λ2)p−

λ2

2

]
≤ a

6p0

[
3(λ1 + λ2)p0 − λ2

2

]
.

In the domain {(p, t) ∈ N : Z(p, t) < log(1 +Kb)},

−LZ ≥ f(p)− ρ ≥ −(µ1 − µ2)p0 ≥
a

6p0

[
3(λ1 + λ2)p0 − λ2

2

]
≥ −LZ,

where the third inequality is due to (19) and the left hand side condition in (20). It is clear that

Z(p, T − 1/p0) ≤ Z(3p0, T − 1/p0) = log(1−Ks) ≤ Z(p, T − 1/p0), ∀ p ∈ (0, 3p0 ],

Z(3p0, t) ≤ log(1 +Kb) = Z(3p0, t), ∀ t ∈ (T − 1/p0 − 12p0/λ2, T − 1/p0).

Again using the maximum principle, we deduce Z ≤ Z in the domain N . In particular,

Z(p, t) ≥ Z(p, T − 1/p0 − 12p0/λ2) ≥ Z(p, T − 1/p0 − 12p0/λ2)

> Z(0, T − 1/p0 − 12p0/λ2) > log(1−Ks), ∀ p > 0, t ≤ T − 1/p0 − 12p0/λ2,

which yields the desired result.
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ii) From (21), we infer

p0 ≥ 2/3, (λ1 + λ2)(3p0 − 2)− λ2 ≥
λ1 + λ2

2
;

4(µ1 − µ2)
2(1− p0)

σ2
≤ (λ1 + λ2)

2
,

σ2(λ1 + λ2)

18(µ1 − µ2)
≥ (µ1 − µ2)(1− p0).

Construct the following function:

Z(p, t) =

 log(1−Ks), 0 ≤ p < 3p0 − 2,

log(1−Ks) +
σ2 [ p−(3p0−2) ]2

9(µ1−µ2)(1−p0)
, 3p0 − 2 ≤ p ≤ 1.

It is easy to see that Z ≥ log(1−Ks) and Z ∈ W 2, 1
q ((0, 1)× [0, T )) ∩C((0, 1)× [0, T ]), for any

q ≥ 1. For 0 < p < 3p0 − 2, we have

−LZ = −L(log(1−Ks)) = 0 ≥ f(3p0 − 2)− ρ ≥ f(p)− ρ.

For 3p0 − 2 ≤ p ≤ 2p0 − 1, we find

−LZ =
σ2

9(µ1 − µ2)(1− p0)

{
−(µ1 − µ2)

2p2(1− p)2

σ2
+ 2 [ (λ1 + λ2)p− λ2 ] [ p− (3p0 − 2) ]

}
≥ −(µ1 − µ2)(1− p0) = f(2p0 − 1)− ρ ≥ f(p)− ρ.

For 2p0 − 1 ≤ p ≤ 1, we have

−LZ ≥ σ2

9(µ1 − µ2)(1− p0)

[
−(µ1 − µ2)

24(1− p0)
2

σ2
+ (λ1 + λ2)(1− p0)

]

≥ σ2

9(µ1 − µ2)(1− p0)

(λ1 + λ2)(1− p0)

2

≥ (µ1 − µ2)(1− p0) = f(1)− ρ ≥ f(p)− ρ.

Hence, Z must be a supersolution of (15). We then deduce that

Z(p, t) ≤ Z(p, t) < Z(1, t) = log(1−Ks) +
σ2(1− p0)

µ1 − µ2
≤ log(1−Ks) + a = log(1 +Kb), ∀ p < 1,

which implies that the buy region does not exist. So, p∗b(t) ≡ 1 for all t. 2

Proof of Theorem 4. Consider an auxiliary function:

Z =

{
log(1−Ks) + a

(
4p
p0

− 1
)2

, p0
4 ≤ p ≤ p0

2 ,

log(1−Ks), 0 ≤ p < p0
4 .

Clearly Z ∈ W 2, 1
q ((0, p0/2)× (0, T )) ∩ C([ 0, p0/2 ]× [ 0, T ]) and

Z ≥ log(1−Ks). (35)
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It is not hard to verify that for p ∈ (p0/4, p0/2), we have

−LZ =
a

p20

[
−16(µ1 − µ2)

2p2(1− p)2

σ2
+ 8(λ1 + λ2)p(4p− p0)− 8λ2(4p− p0)

]

≥ −
[
4(µ1 − µ2)

2

σ2
+

8λ2

p0

]
a.

Using (22), it follows

−LZ ≥ −(µ1 − µ2)p0/2 = f(p0/2)− ρ ≥ f(p)− ρ (36)

for p ∈ (p0/4, p0/2). In the case p ∈ (0, p0/4),

−LZ = −L(log(1−Ks)) = 0 ≥ f(p)− ρ. (37)

The combination of (35)-(37) yields

min
{
−LZ − f(p) + ρ, Z − log(1−Ks)

}
≥ 0

in p ∈ (0, p0/2), t ∈ [0, T ). Moreover, it is clear that

Z(p, T ) ≥ log(1−Ks) = Z(p, T ), Z(p0/2, t) = log(1 +Kb) ≥ Z(p0/2, t).

Thus Z must be a supersolution of (15) in [ 0, p0/2 ]× [ 0, T ]. By the maximum principle, we infer

Z ≥ Z in [ 0, p0/2 ]× [ 0, T ]. Then, for p < p0/4, we have

log(1−Ks) ≤ Z ≤ Z ≡ log(1−Ks),

which implies Z ≡ log(1−Ks) for p < p0/4. Note that we can obtain (34) in terms of p0 < 1/3 and

(22). The desired result then follows. 2
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