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Alpha Strategy in China




A Sample Alpha Strategy in China
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Select top 20% in eac!
» Assign weight for eac

Make clusters from 1000 factors

Compute IR for each factor

Weight for each factor in a cluster = IR_i / IR_total
Score the stocks by sum of cluster values

Sort stocks in each industry by scores

h industry
h industry = weight in the market

» Assign weight for eac

h stock = weight in the industry

» Hedge beta using CSI8o0



Problems with Chinese Alpha Strategies

» Reasons for failure of alpha strategies

Market characteristics change, e.g., big/small firm factor no
longer effective

Futures backwardation, difference unpredictable

» Most alpha strategies are more or less the same
Similar pools of factors
Similar ways of assigning weights

» Factors used mainly as a way to do filtering
No prediction

» No mathematical models
Only sets of ad hoc heuristics



Solutions - Optimize Capital Allocation

» Given the same set of stocks to long, different
weightings give different P&Ls

Distribution of delta IR (wind iskA 0.005000)
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Solutions — Predictive Factor Model

» We can build mathematical predictive models using
factors

The model predicts expected returns of stocks
No longer used just as a filter

» Can scientifically evaluate the usefulness, robustness
and the time-dependent characteristics of factors

Overview Pericd Analysis

Factor Premiums
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Problems with Markowitz Portfolio
Optimization




Why Portfolio Optimization

» FoF asset allocation
How much capital to assign to each fund?
» Portfolio asset allocation
How much capital to assign to each strategy?

» Alpha strategy asset allocation

How much capital to assign to each stock?



Harry Markowitz

» It all starts with Markowitz in 1952...
Standard textbook model

Widely taught in universities
MBA courses

» Won the Nobel Memorial Prize in Economic Sciences
1n 1990.
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Modern Portfolio Theory - Insights

» An asset's risk and return should be assessed by how it
contributes to a portfolio's overall risk and return, but

not by itself.

» Mean-Variance (MV) optimization
Investors are risk averse, meaning that given two portfolios
that offer the same expected return, investors will prefer the
less risky one.
An investor who wants higher expected returns must accept
more risk.

An investor can have individual risk aversion characteristics
in terms of the risk (tolerance) parameter.
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Modern Portfolio Theory — Math

» max{w E(r141) — Aw'Z;w}
w

where w is the optimal portfolio weights
E(7;41) is the expected return for the next period
X, is the covariance matrix for the assets
» Constraints: Aw < b
No short selling: —lw < 0

» Alternatively, we have
min{w'2;w — Aw E(1y41)}
w

» Solution: Quadratic Programming
» NM:

http://redmine.numericalmethod.com/projects/public/repositor
y/svn-
algoquant/show/core/src/main/java/com/numericalmethod/alg
oquant /model/ Dortfohooptlmlzatlon /markowitz
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Efficient Frontier

» Given
wE(reyq) = 1
» Find w s.t.,

werr = argmin{lw’'Z w}
w
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Markowitz’s TheoryH o] i

» Require the knowledge of means and covariances.
N2+N

Too many parameters to estimate: N +

For N = 300, we have 45,450 parameters to estimate.
For N = 3000, we have 4,504,500 parameters to estimate.

Chopra & Ziemba (1993) shows that errors in means are about 10x
as important as errors in variances, and errors in variances are
about 2x important as errors in covariances.

Time varying. Tied to business cycles.
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Problems with Sample Covariance Matrix

» A sample covariance matrix is often ill-conditioned, nearly singular,
sometimes not even invertible and sometimes not even positive semi-
definite.

dimension: p, number of samples: n
% > 1, matrix not invertible

% < 1 but not negligible, matrix ill-conditioned

» Linear dependency among stocks.
Asynchronous data
incomplete data
artificial changes due to stress-tests
» Error Maximization:
Largest sample eigenvalues are systematically biased upwards.
Smallest sample eigenvalues are systematically biased downwards.

Inverting a sample covariance matrix increases significantly the estimation
error.

Capital allocated to the extreme eigenvalues where they are most unreliable.
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Problems with Sample Mean

» Sample mean is only an estimation using TWO data points, namely the
TWO end points, regardless of how big the sample size is.

Given a set of historical returns {ry, ..., 1;}, the sample mean is

- t
r=Li=1"

~ Yioqlog(1 4+ 1) = Xi_ log(p;) — log(p;i—1)

= log(p;) — log(po)
Assume returns follow Gaussian distribution.

Nassim Nicholas Taleb: After the stock market crash (in 1987), they
rewarded two theoreticians, Harry Markowitz and William Sharpe, who
built beautifully Platonic models on a Gaussian base, contributing to what is
called Modern Portfolio Theory. Simply, if you remove their Gaussian
assumptions and treat prices as scalable, you are left with hot air. The Nobel
Committee could have tested the Sharpe and Markowitz models—they work
like quack remedies sold on the Internet—but nobody in Stockholm seems
to have thought about it.
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Problems with Diversification

» Litterman & et al. (1992,
1999, 2003):

When unconstrained,
portfolios will have large
long and short positions.

0000000000

When subject to long only
constraint, capital is
allocated only to a few
assets.

» Best & Grauer (1991): a
small increase in expected
return can consume half of
the capital.
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Problems with Constraints
» Minimizing variance
max w E(ry41), s.t.,
w

C(),Zt(l) < OMAX
1'w =1
w =0

» Market impact

3
max {a) E(res1) — Apw'Ziw — Ay Xieq (mj|a)j|2 + cj|a)j|)}
» Diversification constraints (sector exposure)
Z]-ESL_|a)]Q + w;j| < u; forsectori =1, ...,S

» Tax, transaction costs, etc.
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Problem with Performance

» P&L often worse than the 1/N strategy (equal
weighting).

Portfolio Optimization Algorithms on CSI300
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Comments on Markowitz

» Wesley Gray: Although Markowitz did win a Nobel
Prize, and this was partly based on his elegant
mathematical solution to identifying mean-variance
efficient portfolios, a funny thing happened when his
ideas were applied in the real world: mean-variance
performed poorly. The fact that a Nobel-Prize winning
idea translated into a no-value-add-situation for
investors is something to keep in mind when
considering any optimization method for asset
allocation ...complexity does not equal value!
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Solutions for Practical Portfolio
Optimization




Solutions to Estimating Covariance — Dimension
Reduction

» Dimension reduction via multifactor models
Relate the i-th asset returns 7; to k factors f, ..., f; by

— !/
ri=a;+ (fi, 0 i)' Bi + €
a;, [; are unknown regression parameters; €; unobserved
random noise with mean o and are uncorrelated.

COV(Tit; 7"jt) = Bi V(f) ,let + COV(Eit; Ejt)
E.g., alpha strategy, Fama-French model, CAPM, APT
NM:

http://redmine.numericalmethod.com/projects/public/repository

/[SVIN-

algoquant/show/core/src/main/java/com/numericalmethod/algo
quant/model/factormodel
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Solutions to Estimating Covariance — Shrinkage
Estimators

» Pull the extreme eigenvalues back to the mean.
» Ledoit and Wolf (2003, 2004):
S=06F+(1-6)s
0 is an estimator of the optimal shrinkage constant

F is given by mean of the prior distribution or a structured covariance
N24+N

matrix, which has much fewer parameters than N +

S the sample covariance

NM:

» Ledoit and Wolf (2012): nonlinear shrinkage
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Inverse Covariance Matrix vs Covariance Matrix

Y1 Y2 Y3 Ya Y5
— — — —
& k k k k k
inverse-covariance matrix or covariance matrix?
'8 =y 8.6 B 7 [ 083 0.67 0.50 033 017 ]
!.- -1 2 -1 0 0 7 0.67 1.33 1.00 0.67 0.33
K™' - 0o -1 2 =1 0 K-=—| 050 1.00 150 1.00 0.50
Cle 0 <y 9§ .5 k033 067 1.00 1.33 067
| O () 0 =1 @ | | 0.17 033 0.50 0.67 0.83 |




Solutions to Estimating Covariance — Covariance
Selection

» Dempster (1972): the covariance structure of a
multivariate normal population can be simplified by
setting elements of the inverse of the covariance
matrix to zero.

» Awoye, OA; (2016): Graphical LASSO
» NM:
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Solutions to Estimating Covariance — Nearest
Positive Definite Matrix

» Matrix made Positive Definite
Goldfeld, Quandt and Trotter
Matthews and Davies
Positive diagonal
NM:

http://www.numericalmethod.com/javadoc/suanshu/com/numer
icalmethod/suanshu/algebra/linear/matrix/doubles/operation/po
sitivedefinite/package-summary.html

» Nearest Covariance/Correlation Matrix
Nicholas J. Higham (1988, 2013)
Defeng, Sun (2011, 2006)
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Solutions to Estimating Mean - Statistical
Methods

» Trading signals
NM:

http://redmine.numericalmethod.com/projects/public/repository

[svn-
algoquant/show/core/src/main/java/com/numericalmethod/algo
quant/model

» Multifactor models: r; = a; + (fy, ..., fx)'B; + €;
» Shrinkage
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Solutions to Estimating Mean - Black-Litterman

ik Aversior ) Markel
Coeflicient oo iz Views Uncertainty of Views
0 Maex ] e
a=(E)-r,)fo (=) () ©) «)
Implied Equilibrium Retum Vector
M= AZw,,
Prior Equilibrium Distribution Distribution
N~(,z) N~(0.9)

¥~ lerLfex) + (Pamp))

» Combined Return Vector
ERR) =[(X)" '+ P QP (D) T+ PO 10Q]

P: a matrix that identifies the assets involved in the views (K X N)

Q: a diagonal covariance matrix of error terms from the expressed views representing the
uncertainties in each view (K X K)

IT: the implied equilibrium return vector (N x 1)
Q: the view vector (K x 1)

28



Solutions to Diversification — Using Constraints

» Black-Litterman

» Diversification constraints, e.g.,
lower and upper bounds
sector exposure

29



Solutions to Diversification — Almost Efficient
Portfolios

MVO intends to give an optimized portfolio in terms of risk-reward
MVO does not intend to give a diversified portfolio
Many portfolios on the efficient frontier are indeed concentrated

However, there are many well diversified portfolios within a small
neighborhood of the efficient frontier

» Almost Efficient Portfolios:

v v Vv Vv

g

/ _—Efficient Frontier
<]

max D (w) s.t., (D is the diversification criterion.)
w

Vo'zw < offf + Ao, relaxation of portfolio variance
Reff — AR < w'r, relaxation of portfolio expected return
1,(,() — 1 risk fres rate

Expecied Keturn

Standard Deviation
L]
» NM:
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Second Order Conic Programming

» min f'x, s.t.,
X

lA;x + bill, <cix+d;,i=1,..,m
Fx =g
» LP, QP

» Solution: interior point method

31



Solutions to Imposing Constraints - Second Order

Conic Programming .
10]]a < ta— ) By,
» Market impact 0l 25— (55—, = L,-eevm,

n Ay 2) z .
]=1 m]|(‘)]| S tz ||(.3_1 Jgj)lbi:%—k%,j:l,-“,?l:
m; 2 !

35 _.1—533' .
||(1_253)||2{_ 5 ?j_]‘!...!n'

» Diversification constraints (sector exposure)

Zjegi|wjp T+ a)j| < u; forsectori =1, ...,S
0[]z < —Zﬂj—l—uiﬁ:}- ATz 4 Cills <0z 4d;, i=1,--- .k
JES;

.'1_1_ :Dlxib Ci:D. bi: _ZEJ d!. = 1. ::g’.

JES;
» Many other constraints can be modeled as SOCP
CO n Straints . =8 cpm.numericalme'dﬂod.suanshu.model.portfohoophmlzation.soq:.constramts

|&] SOCPMaximumLoan.java
. |&] SOCPNoTradingList1.java
» NM has a collection of them. & soscmemns.
& SOCPSelfFinancing.java
|&] SOCPZeroValue.java
= |:j com. numericalmethod.suanshu.model. portfoliooptimization.socp.constraints. ybar
|&] SOCPNoTradinglist2.java
@ SOCPSectorExposure.java
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NM SOCP Optimizer

» https://sscloud-201608.appspot.com/socp-portfolio-

optim.html

SOCP Portfolio Optimization

e
INVENTS THE BEST NUMERICAL LISARY
AND FINANCLAL ANALYTICS
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https://sscloud-201608.appspot.com/socp-portfolio-optim.html
https://sscloud-201608.appspot.com/socp-portfolio-optim.html

SOCP Optimizers

» Numerical Method Optimizers
25 times faster than free optimizers, e.g., R

} M O S E I< Operation Performance
* 30 B suanshu-3.3.0
} GurObl ;o;vj]r;g 25501092 (800 variables, 1600 constraints)
» CPLEX —
» XPRESS

N
o

—
o

Relative time used (Lower is better)

solving SOCP (800 variables, 1600 constraints)
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Solution to Performance - Better Estimations

» We combine all the NM modules and algorithms to
create better MVO models.

Better mean estimation
Better covariance estimation
Better constraint modeling

Better diversification criterion

» NM MVO comparison framework:

http://redmine.numericalmethod.com/projects/public/rep
ository/svn-
algogquant/show/core/src/main/java/com/numericalmetho
d/algoquant/model/portfoliooptimization/simulation
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Solution to Performance — Unknown Mean and
Unknown Covariance

» Incorporate uncertainties of estimations into the model.
» max{E(w'r;41) — AVar(w'riyq)}
w

» This is a stochastic optimization problem.

» Use bootstrapping to estimate p,, and V}, from past return.
Resample with replacements
Model returns as AR
Model returns as SR
Model returns as SR+GARCH

» NM:

» http://numericalmethod. com/blog/zon/oz/16/mean -variance-portfolio-
optimization-when-means-and-covariances-are-unknown/

» http://www.numericalmethod.com/javadoc/suanshu/com/numericalmetho
d/suanshu/model/lai2o10/package-summary.html

» http://redmine.numericalmethod.com/projects/public/repository/svn-
algoquant/ show/core/src/main/java/ com/numerlcalmethod/algoquant/rno
del/Dortfohooptlmlzatlon/ lai2o010
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Solution to Performance — Unknown Mean and
Unknown Covariance

36
Markowitz
34r Plug-in
Covariance-shrinkage
NPEB
32r Michaud
3 —
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Realized Cumulative Returns Over Time -
Unknown Mean and Unknown Covariance
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Robust Optimization — Estimation Errors With
Bounds

» We assume that there are inherent uncertainties in the inputs,
mean and covariance. While the true values of the model’s
parameters are not known with certainty, but the bounds are
assumed to be known.

» The optimal solution represents the best choice when
considering all possibilities from the uncertainty set.

» Robust formulation with uncertainty in expected returns.

min max{w'XZw — A’ w}
w uUeu

[t says: minimize the worst of risk among all possible values of the
expected return.

» Robust formulation of the MVO problem.

max min {0 — lo'Sw}
w (M,Z)EU(@E)

[t says: maximize the worst of risk-adjusted reward among all
possible values of mean and covariance.
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Robust Optimization — Performance
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Multi-Stage Portfolio Optimization

4

We can rebalance the portfolio periodically at times
t=1,..,T —1.
Our objective function should be with respect to the expiry
time, T'.

max E|[U(Wy)]

At stage t = 1, we can rebalance the portfolio by specifying
the weights.

At stage t = 2, we know the realized returns in the last
period so we can use this information to rebalance the
portfolio. Thus, the weights in stage 2 are functions of the
(random) realization in the last stage.

Solution: stochastic programming, dynamic programming

41



Al - Genetic Programming (1)

» Non-parametric, non-analytical, no estimation
algorithm

» Grid search, no math needed

42

But impractical for large number of stocks

E.g., 10 levels, 3000 stocks, search space = 10”3000

Wspy Writ returnr volat v
0% 100% -0.7% 8.8%
10% 90% 4.5% 7.6%
20% 80% 9.7% 6.7%
30% 70% 14.9% 6.0%
40% 60% 20.0% 5.7%
50% 50% 25.1% 5.9%
60% 40% 30.3% 6.5%
70% 30% 35.3% 7.5%
80% 20% 40.4% 8.6%
90% 10% 45.5% 9.9%
100% 0% 50.5% 11.3%




Al - Genetic Programming (2)

» Use Al to improve performance of known portfolios.

HUGE search space

known
good
portfolio

known
good
portfolio

known
good
portfolio

known

good
portfolio

known

known
good
portfolio

good
portfolio
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Comparisons of Optimization Algorithms

750,000
700,000
G50,000
G00,000
550,000
500,000 -
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100,000

Walues
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Sharpe-Omega, a Better Measure of
Risk




Better Risk Measures

» Variance, hence Sharpe ratio, is not a good measure of
risks.

Sharpe ratio does not differentiate between winning and
losing trades, essentially ignoring their likelihoods (odds).

Sharpe ratio does not consider, essentially ignoring, all
higher moments of a return distribution except the first
two, the mean and variance.

» Other risk measures:

. : R-T
Sortino ratio, S = —
DR
L] T_
Calmar ratio, C = =2
MD



Sharpe’s Choice

» Both A and B have the same mean.
» A has a smaller variance.

» Sharpe will always chooses a portfolio of the smallest
variance among all those having the same mean.

Hence A is preferred to B by Sharpe.



Avoid Downsides and Upsides

» Sharpe chooses the smallest variance portfolio to
reduce the chance of having extreme losses.

» Yet, for a Normally distributed return, the extreme
gains are as likely as the extreme losses.

» Ignoring the downsides will inevitably ignore the
potential for upsides as well.



Potential for Gains

» Suppose we rank A and B by their potential for gains,
we would choose B over A.
» Shall we choose the portfolio with the biggest variance

then?
[t 1s very counter intuitive.



Example 1: A or B?




Example1: L =3

» Suppose the loss threshold is 3.

» Pictorially, we see that B has more mass to the right of
3 than that of A.

B: 43% of mass; A: 37%.

» We compare the likelihood of winning to losing.
B: 0.77; A: 0.50.

» We therefore prefer B to A.



Example1: L =1

» Suppose the loss threshold is 1.

» A has more mass to the right of L than that of B.

» We compare the likelihood of winning to losing.
A:1.71; B:1.31.

» We therefore prefer A to B.



Example 2

150



Example 2: Winning Ratio

» It is evident from the example(s) that, when choosing
a portfolio, the likelihoods/odds/chances/potentials
for upside and downside are important.

Wa

» Winning ratio —=:
Whg

20 gain: 1.8
30 gain: 0.85
40 gain: 35



Example 2: Losing Ratio
» Losing ratio Z¥
Lp
lo loss: 1.4
20 loss: 0.7
30 loss : 8o
40 loss : 100,000!!!



Higher Moments Are Important

» Both large gains and losses in example 2 are produced
by moments of order 5 and higher.
They even shadow the effects of skew and kurtosis.
Example 2 has the same mean and variance for both
distributions.
» Because Sharpe Ratio ignores all moments from order
3 and bigger, it treats all these very different
distributions the same.



How Many Moments Are Needed?

0.2-

0.157

0.17

0057

I.1|0T L] L] Ll 1 L] L] L




Distribution A

» Combining 3 Normal distributions
N(-5, 0.5)
N(o, 6.5)
N(5, 0.5)
» Weights:
25%
50%
25%



Moments of A

» Same mean and variance as distribution B.

» Symmetric distribution implies all odd moments (3,
5t etc.) are o.

» Kurtosis = 2.65 (smaller than the 3 of Normal)
Does smaller Kurtosis imply smaller risk?

» 6" moment: 0.2% different from Normal
» 8" moment: 24% different from Normal
» 10" moment: 55% bigger than Normal



Performance Measure Requirements

» Take into account the odds of winning and losing.
» Take into account the sizes of winning and losing.

» Take into account of (all) the moments of a return
distribution.



L.oss Threshold

» Clearly, the definition, hence likelihoods, of winning
and losing depends on how we define loss.
» Suppose L = Loss Threshold,
for return < L, we consider it a loss
for return > L, we consider it a gain



An Attempt

» To account for
the odds of wining and losing
the sizes of wining and losing
» We consider

Q = E(r|r>L)xP(r>L)
~ E(r|rsL)xP(r<L)

_ E(r|r>L)(1-F(L))
~ E(r|rsL)F(L)

» ()




First Attempt

Probability

Likelihood of Gain = (1 —F(L))

Expected Loss
Given Loss =1

Expected Gain
Given Gamn = g

/

Likelihood of L}(Z F(L)

K

Return



First Attempt Inadequacy

» Why F(L)?

» Not using the information from the entire
distribution.

hence ignoring higher moments



Another Attempt

Probability B C

D L Return



Omega Definition

» () takes the concept to the limit.
» ) uses the whole distribution.

» () definition:
__ABC

~ ALD
fb=max{r}

— JL
y (L ===

fa=min{r}

[1-F(r)]dr
F(r)dr




Intuitions

» Omega is a ratio of winning size weighted by
probabilities to losing size weighted by probabilities.

» Omega considers size and odds of winning and losing
trades.

» Omega considers all moments because the definition
incorporates the whole distribution.



Omega Advantages

» There is no parameter (estimation).
» There is no need to estimate (higher) moments.
» Work with all kinds of distributions.

» Use a function (of Loss Threshold) to measure
performance rather than a single number (as in Sharpe
Ratio).

» Itis as smooth as the return distribution.
» It is monotonic decreasing.



Omega Example

1.1

1.06

055

I:Ig ! 5 I ! T T ! T T T T T T T T T T T T T T T

a6 N 10 0.2 0.4



Numerator Integral (1)

» [V d[x(1 - F(x)]

= [x(1-F)]",

» =b(1—F(b)) - L(1-F(L))
» = —L(1-F(L))



Numerator Integral (2)

» [V d[x(1 - F(x)]

y = be(l — F(x))dx + be xd(l — F(x))
FLb(l — F(x))dx — be xdF (x)

b =

Qe



Numerator Integral (3)

» —L(1=F(L)) = [[(1 = F(x))dx — [ xdF (x)
» [7(1 = F())dx = —L(1 = F(L)) + [ xdF (x)
» = [ (x — L)f(x)dx

v = [P max(x — L, 0)f (x)dx

undiscounted call option price




Denominator Integral (1)

» [ d[xF ()]

» = [xF(x0)]",

» = LF(L) — a(F(a))
» = LF(L)



Denominator Integral (2)

» [ d[xF ()]
) = faL F(x)dx + faL xdF (x)



Denominator Integral (3)

» LF(L) = [ F(x)dx + [ xdF (x)
» [ F(x)dx = LF(L) — [, xdF (x)
y = faL(L —x)f(x)dx

> ’ —x,0)f(x)dx
» = E[lmax(L — x,0)]

undiscounted put option price




Another Look at Omega

o flf’:;“a"{”[1—z~"<r>]dr
F(r)dr

fa=min{r}
__ E[max(x-L,0)]
- E[max(L—x,0)]
e ' fE[max(x—L,0)]
e "fE[max(L-x,0)]
_C(L)
TP




Options Intuition

» Numerator: the cost of acquiring the return above L

» Denominator: the cost of protecting the return below
L

» Risk measure: the put option price as the cost of
protection is a much more general measure than
variance



Can We Do Better?

» Excess return in Sharpe Ratio is more intuitive than
C (L) in Omega.

» Put options price as a risk measure in Omega is better
than variance in Sharpe Ratio.



Sharpe-Omega
7L
P(L)
» In this definition, we combine the advantages in both
Sharpe Ratio and Omega.

FQS:

meaning of excess return is clear
risk is bettered measured

» Sharpe-Omega is more intuitive.

» s ranks the portfolios in exactly the same way as ().



Sharpe-Omega and Moments

» It is important to note that the numerator relates only
to the first moment (the mean) of the returns

distribution.

» It is the denominator that take into account the
variance and all the higher moments, hence the whole

distribution.



Sharpe-Omega and Variance

» Supposer > L. Qg > 0.

The bigger the volatility, the higher the put price, the bigger
the risk, the smaller the ()¢, the less attractive the
investment.

We want smaller volatility to be more certain about the
gains.
» Supposer < L. Qg < 0.

The bigger the volatility, the higher the put price, the bigger
the (), the more attractive the investment.

Bigger volatility increases the odd of earning a return above
L.



Non-Linear, Non-Convex Portfolio Optimization

» In general, a Sharpe optimized portfolio is different
from an Omega optimized portfolio.



Beyond Mean Variance Optimization




Optimizing for Omega
[ max Qs(x)
X

i xE(m) =p
Xix=1
L .Xil < Xi <1

. o ° ,
» Minimum holding: x! = (xll, ---,an)



Optimization Methods

» Nonlinear Programming
Penalty Method

» Global Optimization
Tabu search (Glover 2005)
Threshold Accepting algorithm (Avouyi-Dovi et al.)
MCS algorithm (Huyer and Neumaier 1999)
Simulated Annealing
Genetic Algorithm

» Integer Programming (Mausser et al.)



3 Assets Example

4 xl ~+ x2+ x3 =1

4 Ri = X114 + XoToi + X313

r = X111 + XoTyi + (1 — X1 — xZ)rBi



Penalty Method
r F(xq,%2) =

— Q(R;) +
p{[min(0, x;)]* + [min(0, x,)]? + [min(0,1 — x; — x,)]?*}

» Can apply Nelder-Mead, a Simplex algorithm that
takes initial guesses.

» F needs not be differentiable.
» Can do random-restart to search for global optimum.



Threshold Accepting Algorithm

» Itisalocal search algorithm.
It explores the potential candidates around the current best
solution.
» It “escapes” the local minimum by allowing choosing a
lower than current best solution.

This is in very sharp contrast to a hilling climbing
algorithm.



Objective
» Objective function
h:X - R, X €R"

» Optimum
hopt = max h(x)



Initialization

» Initialize n (number of iterations) and step.
» Initialize sequence of thresholds thy, k = 1, ..., step
» Starting point: x5 € X



Thresholds

» Simulate a set of portfolios.

» Compute the distances between the portfolios.

» Order the distances from smallest to biggest.

» Choose the first step number of them as thresholds.



Search

» Xi+1 € Ny, (neighbour of x;)

» Threshold: Ah = h(x;;1) — h(x;)

» Accepting: If Ah > —thy, set x;,1 = X;

» Continue until we finish the last (smallest) threshold.
h(x;) =~ hopt

» Evaluating h by Monte Carlo simulation.



Al - Genetic Programming

» Those arbitrary, non-convex, non-differentiable, non-
continuous, noisy, objective functions are difficult to be
optimized using traditional methods. We resort to
Artificial Intelligence, heuristics and simulations.

» In a genetic algorithm, a population of candidate solutions
(called individuals, creatures, or phenotypes) to an
optimization problem is evolved toward better solutions.
Each candidate solution has a set of properties (its
chromosomes or genotype) which can be mutated and
altered; traditionally, solutions are represented in binary as
strings of os and 1s, but other encodings are also possible.

» NM Genetic Programming Framework:

93


http://www.numericalmethod.com/javadoc/suanshu/com/numericalmethod/suanshu/optimization/multivariate/geneticalgorithm/package-summary.html
http://www.numericalmethod.com/javadoc/suanshu/com/numericalmethod/suanshu/optimization/multivariate/geneticalgorithm/package-summary.html
http://www.numericalmethod.com/javadoc/suanshu/com/numericalmethod/suanshu/optimization/multivariate/geneticalgorithm/package-summary.html

Differential Evolution

» DE is used for multidimensional real-valued functions but does not use
the gradient of the problem being optimized, which means DE does
not require for the optimization problem to be differentiable as is
required by classic optimization methods such as gradient descent and
quasi-newton methods. DE can therefore also be used on optimization
problems that are not even continuous, are noisy, change over time, etc.

» DE optimizes a problem by maintaining a population of candidate
solutions and creating new candidate solutions by combining existing
ones according to its simple formulae, and then keeping whichever
candidate solution has the best score or fitness on the optimization
Eroblem at hand. In this way the optimization problem is treated as a

lack box that merely provides a measure of quality given a candidate
solution and the gradient is therefore not needed.

» NM:

94


http://numericalmethod.com/blog/2011/05/31/strategy-optimization/
http://www.numericalmethod.com/javadoc/suanshu/com/numericalmethod/suanshu/optimization/multivariate/geneticalgorithm/minimizer/deoptim/DEOptim.html
http://www.numericalmethod.com/javadoc/suanshu/com/numericalmethod/suanshu/optimization/multivariate/geneticalgorithm/minimizer/deoptim/DEOptim.html
http://www.numericalmethod.com/javadoc/suanshu/com/numericalmethod/suanshu/optimization/multivariate/geneticalgorithm/minimizer/deoptim/DEOptim.html

Multi Factor Model




Fundamental Theorem in Quantitative Trading

» The average return of a stock = payoff for taking risk

= factor exposure * factor premium

» Factor exposure: the exposure of a stock to some kind
of risk (or factor)

» Factor premium: the payoff to an investor per one unit
of exposure



Fundamental Factor Model

» Fundamental factors = stock characteristics.

size, P/E, current ratio, advertising-expenditure-to-sales ratio, analyst
rating, M12M,

» Factor exposure is known.
The exposure to the risk or factor “size” is simply size/capitalization.
The exposure to the risk or factor “P/E” is simply P/E.

» Factor premium needs to be estimated.
The premium or payoff to one unit of exposure to size is unknown.

» 1y =@+ Binfi + Biofo + o+ Bikfk €
K: number of factors
Bi;: the exposure of each stock i to the j-th factor is different

fj: the factor premium is a property of the factor and is independent of
stocks

a;: time invariant individual stock effect

The uncertainty of r; comes from the uncertainty of f;, which are themselves
random variable.

97



Economic Factor Models

» Economic factors: factor premiums/effects same for all
stocks, e.g., inflation, but different stocks have
different exposures to them.

» Factor exposures need to be estimated: how much is a
stock exposed (sensitive/affected by) to inflation?

» Assumption: the unknown true premium of a factor is
a linear combination of the observed factor value and a
constant (which takes care of the expected part of the
factor value).

We are only rewarded for the unexpected part of the factor
(value).



Quintiles Method

>

>

To test whether a factor (or a strategy) is significant in generating
alpha...

Rank/sort the stocks in a universe by the factor by standardized
factor exposures, e.g., z-scores.

_ Bizu
Divide them into 5 groups (20% each).

Portfolio formed each quarter over the test period. Each portfolio
is hold for 12 months.
Number of portfolios in each quintile for the test period = test period
(in years)*4*(size of universe/s).
Compute average returns for each quintile.

Factor significant if
top first quintile significantly outperformed the universe
the bottom fifth quintile significantly underperformed
the outperformance/underperformance was consistent over time

Zj



Economic Factor Models — Math

» 1=+ pifi + Piafa + o+ ik fk t €
o

=[a;, B - Bul|l1|+e

[k

=Bi'f +e€
» E(n) = Bi E(f)

100



Variance Risk

r 1 =Bi f+ €

» Total risk = diversifiable risk + non-diversifiable risk
Var(r;) = Var(B;'f) + Var(e;)
= Bi' Var(f) B; + Var(e;)

Var(f) is the variance-covariance matrix of the factor
premiums.
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Economic Factor Model - Factor Premiums

» Economic/Behavior/Market: usually expressed as rates, e.g., change %

» Fundamental/Technical/Analyst: zero investment portfolio method
For each time ¢, for each factor k, set the upper and lower cutoff points, xj and x;.
Divide the stocks into three groups.
High group: x;,; > X
Low group: Xk < Xi
Others

Factor premium is the expected return to the zero-investment position that put $1 into
the high group and short $1 in the low group.

free = EQre |xke > Xi) — E(re|xpee < %)
The expectation is taken across stocks.
The weights and returns are both decided on time t.

» Statistical factors: PCA on returns

Each of the most significant factor premium is a linear combination of the stock
returns at time t.

Pick the K eigenvectors q4, ..., qx that correspond to the largest K eigenvalues.
Statistical factors are: f; , = q;'r;.

» Note: all of them, by construction, change over time.
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Economic Factor Model - Factor Exposures

» For each of the N stocks, run an OLS to compute the factor exposures/factor
sensitivities/factor loadings.

» Report betas and their standard errors.
» Merger:

Bap = —=—B4+——Pp

SpA+Sp SaA+Sp

s,: pre-merger market capitalization of firm A
sg: pre-merger market capitalization of firm B

» IPO by Characteristic Matching:
We use the factor exposures of M similar firms.
To identify the M similar firms,

We choose L company characteristics;

Compute the z-score of those L characteristics for a group of firms {z; = (z;4, ..., z;;)} as well as
those of the new company, z = (zy, ..., z1).

Set a threshold, «.

The similar firms are those with smaller distances. That is,
|z =zl <e.

p =%(31+"'+,3AM)
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Economic Factor Model - Algorithm

10.

11.

12.

104

Set the time interval, e.g. monthly or rebalacing period, and time period of data, e.g. 3 to 5 years.
Set the investment universe.
Choose the factors for the model.
Set the risk-free rate.
Collect stock returns for the time period at each interval. If benchmarking,
Better use risk-free rate adjusted return: r;;* = 13 — 73,
If for benchmarking, we use residual stock returns in lieu of stock returns.
n=a+&=r—PBiy
Collect factor premium data for the time period at each interval.
Economic/behavior/market factors: readily available
Fundamental/technical/analyst factors: zero investment portfolio method
Statistical factors: PCA
Estimate the factor exposures from time series regression of stock returns on premium.
If not enough factor-premium data, do characteristic matching before regression.

Check robustness by splitting the data into subsets and compare the estimates for each subset. Highlight major
differences.

Split by time periods.
Split by sectors.
If the estimation is not robust (subset estimates are not similar), try a different estimation method.
Compute the expected stock returns.
Compute the risks of the stocks for both non-diversifiable and diversifiable risks.
Compute the correlation matrix of stocks returns.



NM Technologies




SaaS Tools for Modeling and Constructing "Alpha
Strategy"

e Mutual fund and private equity fund managers, quantitative investment teams, etc.

* In China, the majority of the quantitative trading strategies are alpha strategies. They recently have poor
performance. Funds are extremely desperate to look for a new direction

e NM’s research library provides two tools that can immediately improve the performance of existing alpha
strategies

» multi-factor model
 asset allocation, portfolio optimization

* Provide users with an intuitive and easy to use interface to complete complicated tasks such as financial
modeling, strategy optimization, return performance and risk control, all without programming

- With our system, traders only need to do the first step, factor selection, and leave the rest of the complex process to
system automation, hence great efficiency in strategy research and time to production

Model. P?rt.thf) Backtesting Reporting
construction optlmlzatlon
* o factors e OLS regression = Markowitz « historical backtesting * VaR computation
= sorting, grouping * panel regression = Black-Litterman * Monte Carlo * p&l attribution
- factor exposures o~ B computation » Second Order Conic backtesting « risk assessment
» factor premiums Programming = bootstrapping = easy to understand,
e uncertain mean and backtesting professional and
covariance * scenario and stress standardized report
= customized objective  testing
functions

 corner portfolios



NM FinTech - Alpha Strategy Framework

STRATEGY SETUP Wainting for AlgoQuart Backend
Data Source Overview Period Analysis Performance Report

23 Quant - USA v — Time Specification

st

Stock Filters

big cap + liquid v
Factor Model

— Factor Model
Fama-French 3 factors A
[

Regression Algorithm

least squares v
Benchmark — Stock Filters

S&P 500 v EUGE big cap + liquid Sub Industries:
10101010 - Oil & Gas Drilling 10101020 - Oil & Gas Equipment & Services 10102010 - Integrated Oil & Gas

Portfolio Optimization price Min
0 10102020 - Oil & Gas Exploration & Production [ 10102030 - Oil & Gas Refining & Marketing
guadiatie programming ’ market cap (1e8) Min 10102040 - Oil & Gas Storage & Transportation [ 10102050 - Coal & Consumable Fuels | 15101010 - Commodity Chemicals

10000

Simulation Interval o 15101020 - Diversified Chemicals 15101030 - Fertilizers & Agricultural Chemicals 15101040 - Industrial Gases

S s average volume o 15101050 - Specialty Chemicals | 15102010 - Construction Matesials [| 15103010 - Metal & Glass Conlainers
01/01/2013 04/07/2017 (1e3) 1000
15103020 - Paper Packaging 15104010 - Aluminum 15104020 - Diversified Metals & Mining 15104025 - Copper
IPO date

sir
Rebalance Frequency 15104030 - Gold 15104040 - Precious Metals & Minerals 15104045 - Silver 15104050 - Steel 15105010 - Forest Products
15105020 - Paper Products | 20101010 - Aerospace & Defense | 20102010 - Building Products
3 months A
20103010 - Construction & Engineering | 20104010 - Electrical Components & Equipment | 20104020 - Heavy Electrical Equipment
20105010 - Industrial Conglomerates [ 20106010 - Construction Machinery & Heavy Trucks [§ 20106015 - Agricultural & Farm Machinery
20106020 - Industrial Machinery § 20107010 - Trading Companies & Distributors {§ 20201010 - Commercial Printing
20201050 - Environmental & Facilities Services | 20201060 - Office Services & Supplies [§ 20201070 - Diversified Support Services




NM FinTech - Factor Premiums

Overview Period Analysis Performance Report

— Factor Premiums
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NM FinTech - Factor Exposures

— Factor Exposures

Date

2013-04-01

2013-07-01

2013-10-01

109

Exposures

PH
ECL
mw

PH
ECL
mw

Stock

Stock

Stock.

small firm factor

-0.98020624057
0.7521821173681223
0.17675921120840418

0.7330674873430164
0.004088871483860885
0.502382767338540%
0.3880941795292267
-0.0251900820235465126
-0.0641 5973186078433
0.4060312276472955

small firm factor

-0.9912769842028933
0.6947912459906902
0.1353917117792637
0.6563596226067306
0.00406604033146353
0.4924348894933311
0.6249693340572064
-0.025165263626619424
-0.06436154588664873
0.446100538098187

small firm factor

-0.9839757470412057
0.7181600495627636
0.24823659496235697
0.6036784974107626
0.09320303730702748
0.545633739140703
0.5069160043371046
-0.02516164488738416
-0.06287527101664905
0.4620571470633345

book ta market

-0.5867595430114671
0.7712321081549549
-0.41320B4B052041834
0.07399742427791317
-0.07467B0%835274612
-0.354506426256311
0.5140433187641414
-0.009985331505686163
-0.34133668542067293
0.16253436704360358

2345»>|

baok to market

-0.8139346413832139
0.6740344317826733
-0.7381655235899508
-0.43256464501312336
-0.05162158855102356
-0.2293220456322416
0.6389905663133581
-0.014320268793186802
-0.1291 683863470743
-0.06433387388028302

2345»>|

beok to market

0.7677 518083321332
1.0419616614207015
-0.24295B86393833773
-0.5610%02184915798
0.363459392104368%
-0.11325601778030671
0.24502250623554048
-0.014265813227837012
-0.11856091341011142
-0.087039359934079613

2345»H

excess retumn of benchmark

0.84432700708831%6
0.41600880218156816
1.462360491547159
2.567622437673338
-0.07571164710132486
0.761883422042528
0.18314623674149513
0.02324266228176007
-0.04391923699310263

-418336085529567

expess retum of benchmark
0.7670424876450102
0.44592739400400006
1.3276863607245093
2.380047825117468
-0.058008607100780515
0.83619390228%
0.20313208474702667
0.019933786373609364
0.11898697474930042
1.21262577 50693323

excess retum of benchmark

0.7732466407304476

0.4667228076031 0234

A226678254568856

2.34322665669061

0.03920935389000287

0.9004368312588244

0.104212317 520553443

0.01994343450752461

0.12065814988078041

1.2236336098033344



NM FinTech - St

— Stock Selection

110

ock Selection

Date Stocks
Mo.
2013-04-01 .
3
Mo.
2013-07-01 ;
3
No.
1
2013-10-01 .
3
Mo
1
2014-01-01 2
3
.
Mo.
1
2014-04-01 2
3
A
Mo.
1
2014-07-01 2
3

Ticker
DUK
SHW
FPG

Ticker
DUK
MPC

Tickar
REGM
CELG
YHOO

Tickar

REGN

CELG
DAL

Ticker
MU

REGM
NOC

Ticker
FRX.

PCLN

Company Pasition
company neme n/a
company name n/z

company name nfa

Company Paosition
‘company name nj'a
company name n/z

company name n/a

Company Position
company name nfa
company neme n/a

‘company name n/'a

Company Position
company name n/a
‘company name ny'a
company name n/z

company name nfa

Company Paosition
company name nfa
company neme n/a
‘company name n/'a

‘company name ny'a

Company Pasition
‘company name nj'a
company name n/z

company name nfa

Sector
UTILITIES
MATERIALS
MATERIALS

Sector
UTILITIES
ENERGY
ENERGY

Sactor
HEALTH CARE
HEALTH CARE
INFORMATIOM TECHNOLOGY

Sactor
INFORMATIOM TECHNOLOGY
HEALTH CARE
HEALTH CARE
INDUSTRIALS

Sector
INFORMATION TECHNOLOGY
INFORMATION TECHNOLOGY
HEALTH CARE
INDUSTRIALS

Sector
HEALTH CARE
INFORMATION TECHMOLOGY
CONSUMER DISCRETIOMARY

Industry
ELECTRIC UTILITIES
CHEMICALS
CHEMICALS

Industry

ELECTRIC UTILITIES
OIL GAS AND COMSUMABLE FUELS
0IL GAS AND COMSUMABLE FUELS

Industry
BIOTECHNOLOGY
BISTECHNOLOGY
INTERMET SOFTWARE AND SERVICES

Industry
INTERMET SOFTWARE AND SERVICES
BICTECHNOLOGY
BIOTECHNOLOGY
AIRLINES

Industry

SEMICONDUCTORS AND SEMICONDUCTOR EQUIPMENT
INTERMET SOFTWARE AND SERVICES

BIOTECHNOLOGY

AEROSPACE AND DEFENSE

Industry
PHARMACEUTICALS
INTERMET SOFTWARE AND SERVICES
INTERMET AND DIRECT MARKETIMG RETAIL

Courtry
United States
Unitad States
United States

Country
United States
Unitad States
United States

Country
United States
United States
United States

Country
United States
United States
Unitad States
United States

Country
United States
United States
United States
United States

Courtry
United States
Unitad States
United States

Market Cap
45.78B
16.158
21.278

Market Cap
51.028
20.728
43018

Market Cap
22078
43.608
27338

Market Cap
21648
22078
£4.658
20.778

Market Cap
22908
106.018

Market Cap
23.298
124.628
65.258

P/E Price
21.1531879963961 £5.01
25 7608963391507 156 68
22 4570697676161 13B.55

P/E Price
21.6019293930234 72.32
8.50831046307264 80.83
8.83733893611301| 69.26

P/E Price
26.334280094745% 230.14
32.2728678880911 118.91
7.09146579484146 25.24

P/E Price
86.3086820938818 30.42
26.90124338351034 23014
43.3263234868750 157.2
10.0100692093050 24.21

P/E Price
17.0460744912987 21.66
69.0693075123794 5471
51.4604418228305 230.14
13.367248237095% 113.23

P/E Price
143.611211322777 93.31
63.7180822000766 62.62
32.8183066908094 1251.37




NM FinTech - Capital Allocation

— Asset Allocation

Date Allocation

@ DUK
@ sHW

2013-04-01 @ rre

® DUK
® MPC

2013-07-01 @ pex

@ REGN
@ CELG

2013-10-01 @ vroo

o FE
@ REGH
® cELe

2014-01-01 ® DL




NM FinTech - Performance Statistics

— Performance Measures

Measure Value
ProfitLoss 928480.8442017422
ProfitAfterTransactionFee (TransactionFeeByPercentage (0.002500)) 848722.0456584138
TransactionFeeByPercentage (0.002500) 79758.79854332838

average annual rate of return (capital(1000000.0), interval(2013-01-01T00:00:00.000-05:00/2017-07-

0.14036286355414584
04T00:00:00.000-04:00))

CommissionProfitRatio (Commission (0.250000%)) 0.08590247073099358
MaxDrawdown 289679.4941723208
Max Drawdown Percentage (capital(1000000.000000)) 0.20391959992095543
MaxDrawdownDuration(unit(PT86400S)) 457.0416666666667

beta (interval(2013-01-01T00:00:00.000-05:00/2017-07-04T00:00:00.000-04:00), period(P1Y),
capital(1000000.000000))

alpha (interval(2013-01-071T00:00:00.000-05:00/2017-07-04T00:00:00.000-04:00), period(P1Y),
capital(1000000.000000))

Information Ratio For Periods (capital(1000000.000000), benchmark(0.000000), period(P1Y)) 0.8630375544288351
OmegaForPeriods(capital(1000000.000000)threshold(0.000000)period(P1Y)) Infinity

Sortino ratio (target(0.000000), capital(1000000.000000), interval(2013-01-01T00:00:00.000-
05:00/2017-07-04T00:00:00.000-04:00), period(P1Y)

Calmar ratio (capital(1000000.000000), interval(2013-01-01T00:00:00.000-05:00/2017-07-
04T00:00:00.000-04:00)

0.24737510534676904

0.17003837623625964

1.9723012874804964

0.6883245338287941

Execution Count 101

— P&L
ProfitiLoss
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—— Value

112




NM FinTech - By-Period Performance

By Period Measure

com.numericalmethod.algoquant.execution.performance.measure.byperiod.PeriodByPericdReturns@727b32cc
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