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Alpha Strategy in China 
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A Sample Alpha Strategy in China 
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 Make clusters from 1000 factors 
 Compute IR for each factor 
 Weight for each factor in a cluster = IR_i / IR_total 
 Score the stocks by sum of cluster values 
 Sort stocks in each industry by scores 
 Select top 20% in each industry 
 Assign weight for each industry = weight in the market 
 Assign weight for each stock = weight in the industry 
 Hedge beta using CSI800 



Problems with Chinese Alpha Strategies 
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 Reasons for failure of alpha strategies 
 Market characteristics change, e.g., big/small firm factor no 

longer effective 
 Futures backwardation, difference unpredictable 

 Most alpha strategies are more or less the same 
 Similar pools of factors 
 Similar ways of assigning weights 

 Factors used mainly as a way to do filtering 
 No prediction 

 No mathematical models 
 Only sets of ad hoc heuristics 



Solutions – Optimize Capital Allocation 
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 Given the same set of stocks to long, different 
weightings give different P&Ls 

 



Solutions – Predictive Factor Model 
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 We can build mathematical predictive models using 
factors 
 The model predicts expected returns of stocks 
 No longer used just as a filter 

 Can scientifically evaluate the usefulness, robustness 
and the time-dependent characteristics of factors 



Problems with Markowitz Portfolio 
Optimization 
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Why Portfolio Optimization 
 FoF asset allocation 
 How much capital to assign to each fund? 

 Portfolio asset allocation 
 How much capital to assign to each strategy? 

 Alpha strategy asset allocation 
 How much capital to assign to each stock? 
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Harry Markowitz 
 It all starts with Markowitz in 1952… 
 Standard textbook model 
 Widely taught in universities 
 MBA courses 

 Won the Nobel Memorial Prize in Economic Sciences 
in 1990. 
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Modern Portfolio Theory – Insights 
 An asset's risk and return should be assessed by how it 

contributes to a portfolio's overall risk and return, but 
not by itself. 

 Mean-Variance (MV) optimization 
 Investors are risk averse, meaning that given two portfolios 

that offer the same expected return, investors will prefer the 
less risky one. 

 An investor who wants higher expected returns must accept 
more risk. 

 An investor can have individual risk aversion characteristics 
in terms of the risk (tolerance) parameter. 
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Modern Portfolio Theory – Math 
 max

𝜔
𝜔 E 𝑟𝑡+1 − 𝜆𝜔′Σ𝑡𝜔  

 where 𝜔 is the optimal portfolio weights 
 E 𝑟𝑡+1  is the expected return for the next period 
 Σ𝑡 is the covariance matrix for the assets 

 Constraints: 𝐴𝜔 ≤ 𝑏 
 No short selling: −I𝜔 ≤ 0 

 Alternatively, we have 
 min

𝜔
𝜔′Σ𝑡𝜔 − 𝜆𝜆 E 𝑟𝑡+1  

 Solution: Quadratic Programming 
 NM: 
 http://redmine.numericalmethod.com/projects/public/repositor

y/svn-
algoquant/show/core/src/main/java/com/numericalmethod/alg
oquant/model/portfoliooptimization/markowitz 
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Efficient Frontier 
 Given 
 𝜔 E 𝑟𝑡+1 = 𝜇 

 Find 𝜔 s.t., 
 𝜔𝑒𝑒𝑒 = argmin

𝜔
𝜆𝜔′Σ𝑡𝜔  
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Markowitz’s Theory的问题 
 Require the knowledge of means and covariances. 

 Too many parameters to estimate: 𝑁 + 𝑁2+𝑁
2

. 
 For 𝑁 = 300, we have 45,450 parameters to estimate. 
 For 𝑁 = 3000, we have 4,504,500 parameters to estimate. 
 Chopra & Ziemba (1993) shows that errors in means are about 10x 

as important as errors in variances, and errors in variances are 
about 2x important as errors in covariances. 

 Time varying. Tied to business cycles. 
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Problems with Sample Covariance Matrix 
 A sample covariance matrix is often ill-conditioned, nearly singular, 

sometimes not even invertible and sometimes not even positive semi-
definite. 
 dimension: 𝑝, number of samples: 𝑛 


𝑝
𝑛

> 1, matrix not invertible 


𝑝
𝑛

< 1 but not negligible, matrix ill-conditioned 
 Linear dependency among stocks. 

 Asynchronous data 
 incomplete data 
 artificial changes due to stress-tests 

 Error Maximization: 
 Largest sample eigenvalues are systematically biased upwards. 
 Smallest sample eigenvalues are systematically biased downwards. 
 Inverting a sample covariance matrix increases significantly the estimation 

error. 
 Capital allocated to the extreme eigenvalues where they are most unreliable. 
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Problems with Sample Mean 
 Sample mean is only an estimation using TWO data points, namely the 

TWO end points, regardless of how big the sample size is. 
 Given a set of historical returns 𝑟1, … , 𝑟𝑡 , the sample mean is 
 𝑟̅ = ∑ 𝑟𝑖𝑡

𝑖=1  
 ≈ ∑ log 1 + 𝑟𝑖𝑡

𝑖=1 = ∑ log 𝑝𝑖 − log 𝑝𝑖−1𝑡
𝑖=1  

 = log 𝑝𝑡 − log 𝑝0  
 Assume returns follow Gaussian distribution. 

 Nassim Nicholas Taleb: After the stock market crash (in 1987), they 
rewarded two theoreticians, Harry Markowitz and William Sharpe, who 
built beautifully Platonic models on a Gaussian base, contributing to what is 
called Modern Portfolio Theory. Simply, if you remove their Gaussian 
assumptions and treat prices as scalable, you are left with hot air. The Nobel 
Committee could have tested the Sharpe and Markowitz models—they work 
like quack remedies sold on the Internet—but nobody in Stockholm seems 
to have thought about it. 
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Problems with Diversification 
 Litterman & et al. (1992, 

1999, 2003): 
 When unconstrained, 

portfolios will have large 
long and short positions. 

 When subject to long only 
constraint, capital is 
allocated only to a few 
assets. 

 Best & Grauer (1991): a 
small increase in expected 
return can consume half of 
the capital. 
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Problems with Constraints 
 Minimizing variance 
 max

𝜔
𝜔 E 𝑟𝑡+1 , s.t., 

 𝜔′Σ𝑡𝜔 ≤ 𝜎𝑀𝑀𝑀 
 1′𝜔 = 1 
 𝜔 ≥ 0 

 Market impact 

 max
𝜔

𝜔 E 𝑟𝑡+1 − 𝜆𝑃𝜔′Σ𝑡𝜔 − 𝜆𝑀 ∑ 𝑚𝑗 𝜔𝑗
3
2 + 𝑐𝑗 𝜔𝑗𝑛

𝑗=1  

 Diversification constraints (sector exposure) 
 ∑ 𝜔𝑗0 + 𝜔𝑗𝑗∈𝑆𝑖 ≤ 𝑢𝑖 for sector 𝑖 = 1, … , 𝑆 

 Tax, transaction costs, etc. 
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Problem with Performance 
 P&L often worse than the 1/N strategy (equal 

weighting). 
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Comments on Markowitz 
 Wesley Gray: Although Markowitz did win a Nobel 

Prize, and this was partly based on his elegant 
mathematical solution to identifying mean-variance 
efficient portfolios, a funny thing happened when his 
ideas were applied in the real world: mean-variance 
performed poorly. The fact that a Nobel-Prize winning 
idea translated into a no-value-add-situation for 
investors is something to keep in mind when 
considering any optimization method for asset 
allocation ...complexity does not equal value! 
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Solutions for Practical Portfolio 
Optimization 
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Solutions to Estimating Covariance – Dimension 
Reduction 
 Dimension reduction via multifactor models 
 Relate the i-th asset returns 𝑟𝑖 to k factors f1, …, fk by 
 𝑟𝑖 = 𝛼𝑖 + 𝑓1, … , 𝑓𝑘 ′𝛽𝑖 + 𝜖𝑖 
 𝛼𝑖, 𝛽𝑖 are unknown regression parameters; 𝜖𝑖 unobserved 

random noise with mean 0 and are uncorrelated. 
 Cov 𝑟𝑖𝑖 , 𝑟𝑗𝑡 = 𝛽𝑖𝑖′ V 𝑓 𝛽𝑗𝑡′ + Cov 𝜖𝑖𝑖 , 𝜖𝑗𝑗  
 E.g., alpha strategy, Fama-French model, CAPM, APT 
 NM:  

 http://redmine.numericalmethod.com/projects/public/repository
/svn-
algoquant/show/core/src/main/java/com/numericalmethod/algo
quant/model/factormodel 
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Solutions to Estimating Covariance – Shrinkage 
Estimators 
 Pull the extreme eigenvalues back to the mean. 
 Ledoit and Wolf (2003, 2004): 
 Σ� = 𝛿̂𝐹� + 1 − 𝛿̂ 𝑆 

 𝛿̂ is an estimator of the optimal shrinkage constant 
 𝐹� is given by mean of the prior distribution or a structured covariance 

matrix, which has much fewer parameters than 𝑁 + 𝑁2+𝑁
2

. 
 S the sample covariance 

 NM: 
 http://www.numericalmethod.com/javadoc/suanshu/com/numerical

method/suanshu/stats/descriptive/covariance/LedoitWolf2004.html 
 http://www.numericalmethod.com/javadoc/suanshu/com/numerical

method/suanshu/model/returns/moments/MomentsEstimatorLedoi
tWolf.html 

 Ledoit and Wolf (2012): nonlinear shrinkage 
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Inverse Covariance Matrix vs Covariance Matrix 
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Solutions to Estimating Covariance – Covariance 
Selection 
 Dempster (1972): the covariance structure of a 

multivariate normal population can be simplified by 
setting elements of the inverse of the covariance 
matrix to zero. 

 Awoye, OA; (2016): Graphical LASSO 
 NM: 
 http://www.numericalmethod.com/javadoc/suanshu/com/

numericalmethod/suanshu/model/covarianceselection/las
so/CovarianceSelectionGLASSOFAST.html 

 http://www.numericalmethod.com/javadoc/suanshu/com/
numericalmethod/suanshu/model/covarianceselection/las
so/CovarianceSelectionLASSO.html 
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Solutions to Estimating Covariance – Nearest 
Positive Definite Matrix 
 Matrix made Positive Definite 
 Goldfeld, Quandt and Trotter 
 Matthews and Davies 
 Positive diagonal 
 NM: 

 http://www.numericalmethod.com/javadoc/suanshu/com/numer
icalmethod/suanshu/algebra/linear/matrix/doubles/operation/po
sitivedefinite/package-summary.html 

 Nearest Covariance/Correlation Matrix 
 Nicholas J. Higham (1988, 2013) 
 Defeng, Sun (2011, 2006) 
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Solutions to Estimating Mean – Statistical 
Methods 
 Trading signals 
 NM: 

 http://redmine.numericalmethod.com/projects/public/repository
/svn-
algoquant/show/core/src/main/java/com/numericalmethod/algo
quant/model 

 Multifactor models: 𝑟𝑖 = 𝛼𝑖 + 𝑓1, … , 𝑓𝑘 ′𝛽𝑖 + 𝜖𝑖 
 Shrinkage 
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Solutions to Estimating Mean – Black-Litterman 

 Combined Return Vector 
 E 𝑅 = 𝜏Σ −1 + 𝑃′Ω−1𝑃 −1 𝜏Σ −1Π + 𝑃′Ω−1𝑄  

 P: a matrix that identifies the assets involved in the views (𝐾 × 𝑁) 
 Ω: a diagonal covariance matrix of error terms from the expressed views representing the 

uncertainties in each view (𝐾 × 𝐾) 
 П: the implied equilibrium return vector (𝑁 × 1) 
 Q: the view vector (𝐾 × 1) 
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Solutions to Diversification – Using Constraints 
 Black-Litterman 
 Diversification constraints, e.g., 
 lower and upper bounds 
 sector exposure 
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Solutions to Diversification – Almost Efficient 
Portfolios 
 MVO intends to give an optimized portfolio in terms of risk-reward 
 MVO does not intend to give a diversified portfolio 
 Many portfolios on the efficient frontier are indeed concentrated 
 However, there are many well diversified portfolios within a small 

neighborhood of the efficient frontier 
 Almost Efficient Portfolios: 

 max
𝜔

𝐷 𝜔  s.t.,  (D is the diversification criterion.) 

 𝜔′Σ𝜔 ≤ 𝜎eff + ∆𝜎, relaxation of portfolio variance 
 𝑅eff − Δ𝑅 ≤ 𝜔′𝑟, relaxation of portfolio expected return 
 1′𝜔 = 1 

 NM: 
 http://numericalmethod.com/blog/2013/06/19/solving-the-corner-solution-

problem-of-portfolio-optimization/ 
 http://www.numericalmethod.com/javadoc/suanshu/com/numericalmetho

d/suanshu/model/corvalan2005/diversification/package-summary.html 

30 

http://numericalmethod.com/blog/2013/06/19/solving-the-corner-solution-problem-of-portfolio-optimization/
http://numericalmethod.com/blog/2013/06/19/solving-the-corner-solution-problem-of-portfolio-optimization/
http://www.numericalmethod.com/javadoc/suanshu/com/numericalmethod/suanshu/model/corvalan2005/diversification/package-summary.html
http://www.numericalmethod.com/javadoc/suanshu/com/numericalmethod/suanshu/model/corvalan2005/diversification/package-summary.html


Second Order Conic Programming 
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 min
𝑥
𝑓′𝑥, s.t., 

 𝐴𝑖𝑥 + 𝑏𝑖 2 ≤ 𝑐𝑖′𝑥 + 𝑑𝑖, 𝑖 = 1, … ,𝑚 
 𝐹𝐹 = 𝑔 

 LP, QP 
 Solution: interior point method 



Solutions to Imposing Constraints – Second Order 
Conic Programming 
 Market impact 

 ∑ 𝑚𝑗 𝜔𝑗
3
2𝑛

𝑗=1 ≤ 𝑡2 
 
 

 Diversification constraints (sector exposure) 
 ∑ 𝜔𝑗0 + 𝜔𝑗𝑗∈𝑆𝑖 ≤ 𝑢𝑖 for sector 𝑖 = 1, … , 𝑆 

 
 

 Many other constraints can be modeled as SOCP 
constraints. 

 NM has a collection of them. 
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NM SOCP Optimizer 
 https://sscloud-201608.appspot.com/socp-portfolio-

optim.html 
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SOCP Optimizers 
 Numerical Method Optimizers 
 25 times faster than free optimizers, e.g., R 

 MOSEK 
 Gurobi 
 CPLEX 
 XPRESS 
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Solution to Performance – Better Estimations 
 We combine all the NM modules and algorithms to 

create better MVO models. 
 Better mean estimation 
 Better covariance estimation 
 Better constraint modeling 
 Better diversification criterion 

 NM MVO comparison framework: 
 http://redmine.numericalmethod.com/projects/public/rep

ository/svn-
algoquant/show/core/src/main/java/com/numericalmetho
d/algoquant/model/portfoliooptimization/simulation 
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Solution to Performance – Unknown Mean and 
Unknown Covariance 
 Incorporate uncertainties of estimations into the model. 

 max
𝜔

E 𝜔′𝑟𝑡+1 − 𝜆 Var 𝜔′𝑟𝑡+1  

 This is a stochastic optimization problem. 
 Use bootstrapping to estimate 𝜇𝑛 and 𝑉𝑛 from past return. 

 Resample with replacements 
 Model returns as AR 
 Model returns as SR 
 Model returns as SR+GARCH 

 NM: 
 http://numericalmethod.com/blog/2013/02/16/mean-variance-portfolio-

optimization-when-means-and-covariances-are-unknown/ 
 http://www.numericalmethod.com/javadoc/suanshu/com/numericalmetho

d/suanshu/model/lai2010/package-summary.html 
 http://redmine.numericalmethod.com/projects/public/repository/svn-

algoquant/show/core/src/main/java/com/numericalmethod/algoquant/mo
del/portfoliooptimization/lai2010 
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Solution to Performance – Unknown Mean and 
Unknown Covariance 
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Realized Cumulative Returns Over Time – 
Unknown Mean and Unknown Covariance 
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Robust Optimization – Estimation Errors With 
Bounds 
 We assume that there are inherent uncertainties in the inputs, 

mean and covariance. While the true values of the model’s 
parameters are not known with certainty, but the bounds are 
assumed to be known. 

 The optimal solution represents the best choice when 
considering all possibilities from the uncertainty set. 

 Robust formulation with uncertainty in expected returns. 
 min

𝜔
max
𝜇�∈𝑈

𝜔′Σ𝜔 − 𝜆𝜇�′𝜔  

 It says: minimize the worst of risk among all possible values of the 
expected return. 

 Robust formulation of the MVO problem. 
 max

𝜔
min

𝜇� ,Σ� ∈𝑈 𝜇� ,Σ�
𝜇�′𝜔 − 𝜆𝜔′Σ�𝜔  

 It says: maximize the worst of risk-adjusted reward among all 
possible values of mean and covariance. 
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Robust Optimization – Performance 
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Multi-Stage Portfolio Optimization 
 We can rebalance the portfolio periodically at times 
𝑡 = 1, … ,𝑇 − 1. 

 Our objective function should be with respect to the expiry 
time, 𝑇. 
 max𝐸 𝑈 𝑊𝑇  

 At stage 𝑡 = 1, we can rebalance the portfolio by specifying 
the weights. 

 At stage 𝑡 = 2, we know the realized returns in the last 
period so we can use this information to rebalance the 
portfolio. Thus, the weights in stage 2 are functions of the 
(random) realization in the last stage. 

 Solution: stochastic programming, dynamic programming 

41 



AI – Genetic Programming (1) 
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 Non-parametric, non-analytical, no estimation 
algorithm 

 Grid search, no math needed 
 But impractical for large number of stocks 
 E.g., 10 levels, 3000 stocks, search space = 10^3000 



AI – Genetic Programming (2) 
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 Use AI to improve performance of known portfolios. 

HUGE search space 

known 
good 

portfolio 

crossover search 

known 
good 

portfolio 

crossover search 

known 
good 

portfolio 

crossover search 

known 
good 

portfolio 

crossover search 

known 
good 

portfolio 

crossover search 

known 
good 

portfolio 

crossover search 



Comparisons of Optimization Algorithms 
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Sharpe-Omega, a Better Measure of 
Risk 

45 



Better Risk Measures 
 Variance, hence Sharpe ratio, is not a good measure of 

risks. 
 Sharpe ratio does not differentiate between winning and 

losing trades, essentially ignoring their likelihoods (odds). 
 Sharpe ratio does not consider, essentially ignoring, all 

higher moments of a return distribution except the first 
two, the mean and variance. 

 Other risk measures: 
 Sortino ratio, 𝑆 = 𝑅 −𝑇

𝐷𝐷
 

 Calmar ratio, 𝐶 = 𝑟̅36
𝑀𝑀
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Sharpe’s Choice 
 Both A and B have the same mean. 
 A has a smaller variance. 
 Sharpe will always chooses a portfolio of the smallest 

variance among all those having the same mean. 
 Hence A is preferred to B by Sharpe. 



Avoid Downsides and Upsides 
 Sharpe chooses the smallest variance portfolio to 

reduce the chance of having extreme losses. 
 Yet, for a Normally distributed return, the extreme 

gains are as likely as the extreme losses. 
 Ignoring the downsides will inevitably ignore the 

potential for upsides as well. 



Potential for Gains 
 Suppose we rank A and B by their potential for gains, 

we would choose B over A. 
 Shall we choose the portfolio with the biggest variance 

then? 
 It is very counter intuitive. 



Example 1: A or B? 



Example 1: L = 3 
 Suppose the loss threshold is 3. 
 Pictorially, we see that B has more mass to the right of 

3 than that of A. 
 B: 43% of mass; A: 37%. 

 We compare the likelihood of winning to losing. 
 B: 0.77; A: 0.59. 

 We therefore prefer B to A. 



Example 1: L = 1 
 Suppose the loss threshold is 1. 
 A has more mass to the right of L than that of B. 
 We compare the likelihood of winning to losing. 
 A: 1.71; B: 1.31. 

 We therefore prefer A to B. 



Example 2 



Example 2: Winning Ratio 
 It is evident from the example(s) that, when choosing 

a portfolio, the likelihoods/odds/chances/potentials 
for upside and downside are important. 

 Winning ratio 𝑊𝐴
𝑊𝐵

: 

 2𝜎 gain: 1.8 
 3𝜎 gain: 0.85 
 4𝜎 gain: 35 



Example 2: Losing Ratio 

 Losing ratio 𝐿𝐴
𝐿𝐵

: 

 1𝜎 loss: 1.4 
 2𝜎 loss: 0.7 
 3𝜎 loss : 80 
 4𝜎 loss : 100,000!!! 



Higher Moments Are Important 
 Both large gains and losses in example 2 are produced 

by moments of order 5 and higher. 
 They even shadow the effects of skew and kurtosis. 
 Example 2 has the same mean and variance for both 

distributions. 
 Because Sharpe Ratio ignores all moments from order 

3 and bigger, it treats all these very different 
distributions the same. 



How Many Moments Are Needed? 



Distribution A 
 Combining 3 Normal distributions 
 N(-5, 0.5) 
 N(0, 6.5) 
 N(5, 0.5) 

 Weights: 
 25% 
 50% 
 25% 



Moments of A 
 Same mean and variance as distribution B. 
 Symmetric distribution implies all odd moments (3rd, 

5th, etc.) are 0. 
 Kurtosis = 2.65 (smaller than the 3 of Normal) 
 Does smaller Kurtosis imply smaller risk? 

 6th moment: 0.2% different from Normal 
 8th moment: 24% different from Normal 
 10th moment: 55% bigger than Normal 



Performance Measure Requirements 
 Take into account the odds of winning and losing. 
 Take into account the sizes of winning and losing. 
 Take into account of (all) the moments of a return 

distribution. 



Loss Threshold 
 Clearly, the definition, hence likelihoods, of winning 

and losing depends on how we define loss. 
 Suppose L = Loss Threshold, 
 for return < L, we consider it a loss 
 for return > L, we consider it a gain 



An Attempt 
 To account for 
 the odds of wining and losing 
 the sizes of wining and losing 

 We consider 

 Ω = 𝐸 𝑟|𝑟>𝐿 ×𝑃 𝑟>𝐿
𝐸 𝑟|𝑟≤𝐿 ×𝑃 𝑟≤𝐿

 

 Ω = 𝐸 𝑟|𝑟>𝐿 1−𝐹 𝐿
𝐸 𝑟|𝑟≤𝐿 𝐹 𝐿

 



First Attempt 



First Attempt Inadequacy 
 Why F(L)? 
 Not using the information from the entire 

distribution. 
 hence ignoring higher moments 



Another Attempt 

A 

B C 

D 



Omega Definition 
 Ω takes the concept to the limit. 
 Ω uses the whole distribution. 
 Ω definition: 
 Ω = 𝐴𝐴𝐴

𝐴𝐴𝐴
 

 Ω = ∫ 1−𝐹 𝑟 𝑑𝑑𝑏=max 𝑟
𝐿

∫ 𝐹 𝑟 𝑑𝑑𝐿
𝑎=min 𝑟

 



Intuitions 
 Omega is a ratio of winning size weighted by 

probabilities to losing size weighted by probabilities. 
 Omega considers size and odds of winning and losing 

trades. 
 Omega considers all moments because the definition 

incorporates the whole distribution. 



Omega Advantages 
 There is no parameter (estimation). 
 There is no need to estimate (higher) moments. 
 Work with all kinds of distributions. 
 Use a function (of Loss Threshold) to measure 

performance rather than a single number (as in Sharpe 
Ratio). 

 It is as smooth as the return distribution. 
 It is monotonic decreasing. 



Omega Example 



Numerator Integral (1) 

 ∫ 𝑑 𝑥 1 − 𝐹 𝑥𝑏
𝐿  

 = 𝑥 1 − 𝐹 𝑥 𝑏
𝐿 

 = 𝑏 1 − 𝐹 𝑏 − 𝐿 1 − 𝐹 𝐿  
 = −𝐿 1 − 𝐹 𝐿  



Numerator Integral (2) 

 ∫ 𝑑 𝑥 1 − 𝐹 𝑥𝑏
𝐿  

 = ∫ 1 − 𝐹 𝑥 𝑑𝑥𝑏
𝐿 + ∫ 𝑥𝑑 1 − 𝐹 𝑥𝑏

𝐿  

 = ∫ 1 − 𝐹 𝑥 𝑑𝑑𝑏
𝐿 − ∫ 𝑥𝑥𝑥 𝑥𝑏

𝐿  



Numerator Integral (3) 

 −𝐿 1 − 𝐹 𝐿 = ∫ 1 − 𝐹 𝑥 𝑑𝑑𝑏
𝐿 − ∫ 𝑥𝑥𝑥 𝑥𝑏

𝐿  

 ∫ 1 − 𝐹 𝑥 𝑑𝑑𝑏
𝐿 = −𝐿 1 − 𝐹 𝐿 + ∫ 𝑥𝑥𝑥 𝑥𝑏

𝐿  

 = ∫ 𝑥 − 𝐿 𝑓 𝑥 𝑑𝑑𝑏
𝐿  

 = ∫ max 𝑥 − 𝐿, 0 𝑓 𝑥 𝑑𝑑𝑏
𝑎  

 = 𝐸 max 𝑥 − 𝐿, 0  

undiscounted call option price 



Denominator Integral (1) 

 ∫ 𝑑 𝑥𝐹 𝑥𝐿
𝑎  

 = 𝑥𝑥 𝑥 𝐿
𝑎 

 = 𝐿𝐹 𝐿 − 𝑎 𝐹 𝑎  
 = 𝐿𝐹 𝐿  



Denominator Integral (2) 

 ∫ 𝑑 𝑥𝐹 𝑥𝐿
𝑎  

 = ∫ 𝐹 𝑥 𝑑𝑥𝐿
𝑎 + ∫ 𝑥𝑑𝑑 𝑥𝐿

𝑎  



Denominator Integral (3) 

 𝐿𝐿 𝐿 = ∫ 𝐹 𝑥 𝑑𝑑𝐿
𝑎 + ∫ 𝑥𝑥𝑥 𝑥𝐿

𝑎  

 ∫ 𝐹 𝑥 𝑑𝑑𝐿
𝑎 = 𝐿𝐿 𝐿 − ∫ 𝑥𝑥𝑥 𝑥𝐿

𝑎  

 = ∫ 𝐿 − 𝑥 𝑓 𝑥 𝑑𝑥𝐿
𝑎  

 = ∫ max 𝐿 − 𝑥, 0 𝑓 𝑥 𝑑𝑑𝑏
𝑎  

 = 𝐸 max 𝐿 − 𝑥, 0  
 undiscounted put option price 



Another Look at Omega 

 Ω = ∫ 1−𝐹 𝑟 𝑑𝑑𝑏=max 𝑟
𝐿

∫ 𝐹 𝑟 𝑑𝑑𝐿
𝑎=min 𝑟

 

 = 𝐸 max 𝑥−𝐿,0
𝐸 max 𝐿−𝑥,0

 

 = 𝑒−𝑟𝑓𝐸 max 𝑥−𝐿,0
𝑒−𝑟𝑓𝐸 max 𝐿−𝑥,0

 

 = 𝐶 𝐿
𝑃 𝐿

 

 



Options Intuition 
 Numerator: the cost of acquiring the return above 𝐿 
 Denominator: the cost of protecting the return below 
𝐿 

 Risk measure: the put option price as the cost of 
protection is a much more general measure than 
variance 



Can We Do Better? 
 Excess return in Sharpe Ratio is more intuitive than 
𝐶 𝐿  in Omega. 

 Put options price as a risk measure in Omega is better 
than variance in Sharpe Ratio. 



Sharpe-Omega 

 Ω𝑆 = 𝑟̅−𝐿
𝑃 𝐿

 

 In this definition, we combine the advantages in both 
Sharpe Ratio and Omega. 
 meaning of excess return is clear 
 risk is bettered measured 

 Sharpe-Omega is more intuitive. 
 𝛺𝑆 ranks the portfolios in exactly the same way as 𝛺. 



Sharpe-Omega and Moments 
 It is important to note that the numerator relates only 

to the first moment (the mean) of the returns 
distribution. 

 It is the denominator that take into account the 
variance and all the higher moments, hence the whole 
distribution. 



Sharpe-Omega and Variance 
 Suppose 𝑟̅ > 𝐿. Ω𝑆 > 0. 
 The bigger the volatility, the higher the put price, the bigger 

the risk, the smaller the Ω𝑆, the less attractive the 
investment. 

 We want smaller volatility to be more certain about the 
gains. 

 Suppose 𝑟̅ < 𝐿. Ω𝑆 < 0. 
 The bigger the volatility, the higher the put price, the bigger 

the Ω𝑆, the more attractive the investment. 
 Bigger volatility increases the odd of earning a return above 
𝐿. 



Non-Linear, Non-Convex Portfolio Optimization 
 In general, a Sharpe optimized portfolio is different 

from an Omega optimized portfolio. 



Beyond Mean Variance Optimization 
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Optimizing for Omega 



max
𝑥

Ω𝑆 𝑥

∑ 𝑥𝑖𝐸 𝑟𝑖𝑛
𝑖 ≥ 𝜌
∑ 𝑥𝑖𝑛
𝑖 = 1

𝑥𝑖𝑙 ≤ 𝑥𝑖 ≤ 1

 

 Minimum holding: 𝑥𝑙 = 𝑥1𝑙 , … , 𝑥𝑛𝑙
′
 



Optimization Methods 
 Nonlinear Programming 
 Penalty Method 

 Global Optimization 
 Tabu search (Glover 2005) 
 Threshold Accepting algorithm (Avouyi-Dovi et al.) 
 MCS algorithm (Huyer and Neumaier 1999) 
 Simulated Annealing 
 Genetic Algorithm 

 Integer Programming (Mausser et al.) 



3 Assets Example 
 𝑥1 + 𝑥2+ 𝑥3 = 1 
 𝑅𝑖 = 𝑥1𝑟1𝑖 + 𝑥2𝑟2𝑖 + 𝑥3𝑟3𝑖 
 = 𝑥1𝑟1𝑖 + 𝑥2𝑟2𝑖 + 1 − 𝑥1 − 𝑥2 𝑟3𝑖 

 



Penalty Method 
 𝐹 𝑥1, 𝑥2 =
− Ω 𝑅𝑖 +
𝜌 min 0, 𝑥1 2 + min 0, 𝑥2 2 + min 0,1 − 𝑥1 − 𝑥2 2  

 Can apply Nelder-Mead, a Simplex algorithm that 
takes initial guesses. 

 𝐹 needs not be differentiable. 
 Can do random-restart to search for global optimum. 



Threshold Accepting Algorithm 
 It is a local search algorithm. 
 It explores the potential candidates around the current best 

solution. 
 It “escapes” the local minimum by allowing choosing a 

lower than current best solution. 
 This is in very sharp contrast to a hilling climbing 

algorithm. 



Objective 
 Objective function 
 ℎ:𝑋 → 𝑅,𝑋 ∈ 𝑅𝑛 

 Optimum 
 ℎopt = max

𝑥∈𝑋
ℎ 𝑥  



Initialization 
 Initialize 𝑛 (number of iterations) and 𝑠𝑠𝑠𝑠. 
 Initialize sequence of thresholds 𝑡𝑡𝑘, 𝑘 = 1, … , 𝑠𝑠𝑠𝑠 
 Starting point: 𝑥0 ∈ 𝑋 



Thresholds 
 Simulate a set of portfolios. 
 Compute the distances between the portfolios. 
 Order the distances from smallest to biggest. 
 Choose the first 𝑠𝑠𝑠𝑠 number of them as thresholds. 



Search 
 𝑥𝑖+1 ∈ 𝑁𝑥𝑖 (neighbour of 𝑥𝑖) 
 Threshold: ∆ℎ = ℎ 𝑥𝑖+1 − ℎ 𝑥𝑖  
 Accepting: If ∆ℎ > −𝑡𝑡𝑘 set 𝑥𝑖+1 = 𝑥𝑖 
 Continue until we finish the last (smallest) threshold. 
 ℎ 𝑥𝑖 ≈ ℎ𝑜𝑜𝑜 

 Evaluating ℎ by Monte Carlo simulation. 



AI – Genetic Programming 
 Those arbitrary, non-convex, non-differentiable, non-

continuous, noisy, objective functions are difficult to be 
optimized using traditional methods. We resort to 
Artificial Intelligence, heuristics and simulations. 

 In a genetic algorithm, a population of candidate solutions 
(called individuals, creatures, or phenotypes) to an 
optimization problem is evolved toward better solutions. 
Each candidate solution has a set of properties (its 
chromosomes or genotype) which can be mutated and 
altered; traditionally, solutions are represented in binary as 
strings of 0s and 1s, but other encodings are also possible. 

 NM Genetic Programming Framework: 
 http://www.numericalmethod.com/javadoc/suanshu/com/nume

ricalmethod/suanshu/optimization/multivariate/geneticalgorith
m/package-summary.html 
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Differential Evolution 
 DE is used for multidimensional real-valued functions but does not use 

the gradient of the problem being optimized, which means DE does 
not require for the optimization problem to be differentiable as is 
required by classic optimization methods such as gradient descent and 
quasi-newton methods. DE can therefore also be used on optimization 
problems that are not even continuous, are noisy, change over time, etc. 

 DE optimizes a problem by maintaining a population of candidate 
solutions and creating new candidate solutions by combining existing 
ones according to its simple formulae, and then keeping whichever 
candidate solution has the best score or fitness on the optimization 
problem at hand. In this way the optimization problem is treated as a 
black box that merely provides a measure of quality given a candidate 
solution and the gradient is therefore not needed. 

 NM: 
 http://numericalmethod.com/blog/2011/05/31/strategy-optimization/ 
 http://www.numericalmethod.com/javadoc/suanshu/com/numericalmetho

d/suanshu/optimization/multivariate/geneticalgorithm/minimizer/deopti
m/DEOptim.html 
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Multi Factor Model 
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Fundamental Theorem in Quantitative Trading 
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 The average return of a stock = payoff for taking risk 
 = factor exposure * factor premium 

 Factor exposure: the exposure of a stock to some kind 
of risk (or factor) 

 Factor premium: the payoff to an investor per one unit 
of exposure 



Fundamental Factor Model 
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 Fundamental factors = stock characteristics. 
 size, P/E, current ratio, advertising-expenditure-to-sales ratio, analyst 

rating, M12M,  
 Factor exposure is known. 

 The exposure to the risk or factor “size” is simply size/capitalization. 
 The exposure to the risk or factor “P/E” is simply P/E. 

 Factor premium needs to be estimated. 
 The premium or payoff to one unit of exposure to size is unknown. 

 𝑟𝑖 = 𝛼𝑖 + 𝛽𝑖𝑖𝑓1 + 𝛽𝑖2𝑓2 + ⋯+ 𝛽𝑖𝐾𝑓𝐾 + 𝜖𝑖 
 K: number of factors 
 𝛽𝑖𝑗: the exposure of each stock i to the j-th factor is different 
 𝑓𝑗: the factor premium is a property of the factor and is independent of 

stocks 
 𝛼𝑖: time invariant individual stock effect 
 The uncertainty of 𝑟𝑖 comes from the uncertainty of 𝑓𝑗, which are themselves 

random variable. 



Economic Factor Models 
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 Economic factors: factor premiums/effects same for all 
stocks, e.g., inflation, but different stocks have 
different exposures to them. 

 Factor exposures need to be estimated: how much is a 
stock exposed (sensitive/affected by) to inflation? 

 Assumption: the unknown true premium of a factor is 
a linear combination of the observed factor value and a 
constant (which takes care of the expected part of the 
factor value). 
 We are only rewarded for the unexpected part of the factor 

(value). 



Quintiles Method 
 To test whether a factor (or a strategy) is significant in generating 

alpha… 
 Rank/sort the stocks in a universe by the factor by standardized 

factor exposures, e.g., z-scores. 

 𝑧𝑖 = 𝛽𝑖−𝜇
𝜎

 

 Divide them into 5 groups (20% each). 
 Portfolio formed each quarter over the test period. Each portfolio 

is hold for 12 months. 
 Number of portfolios in each quintile for the test period = test period 

(in years)*4*(size of universe/5). 
 Compute average returns for each quintile. 
 Factor significant if 

 top first quintile significantly outperformed the universe 
 the bottom fifth quintile significantly underperformed 
 the outperformance/underperformance was consistent over time 



Economic Factor Models – Math 
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 𝑟𝑖 = 𝛼𝑖 + 𝛽𝑖𝑖𝑓1 + 𝛽𝑖𝑖𝑓2 + ⋯+ 𝛽𝑖𝑖𝑓𝐾 + 𝜖𝑖  

 = 𝛼𝑖 , 𝛽𝑖𝑖, … , 𝛽𝑖𝑖

1
𝑓1…
𝑓𝐾

+ 𝜖𝑖  

 = 𝜷𝒊
′𝒇 + 𝜖𝑖 

 E 𝑟𝑖 = 𝜷𝒊
′ E 𝒇  



Variance Risk 
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 𝑟𝑖 = 𝜷𝒊
′𝒇 + 𝜖𝑖 

 Total risk = diversifiable risk + non-diversifiable risk 
 Var 𝑟𝑖 = Var 𝜷𝒊

′𝒇 + Var 𝜖𝑖  
 = 𝜷𝒊

′ Var 𝒇 𝜷𝒊 + Var 𝜖𝑖  
 Var 𝒇  is the variance-covariance matrix of the factor 

premiums. 
 



Economic Factor Model – Factor Premiums 
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 Economic/Behavior/Market: usually expressed as rates, e.g., change % 
 Fundamental/Technical/Analyst: zero investment portfolio method 

 For each time t, for each factor 𝑘, set the upper and lower cutoff points, 𝑥𝑘 and 𝑥𝑘. 
 Divide the stocks into three groups. 

 High group: 𝑥𝑖𝑖𝑖 > 𝑥𝑘 
 Low group: 𝑥𝑖𝑖𝑖 < 𝑥𝑘 
 Others 

 Factor premium is the expected return to the zero-investment position that put $1 into 
the high group and short $1 in the low group. 

 𝑓𝑘𝑘 = E 𝑟𝑡 |𝑥𝑘𝑘 > 𝑥𝑘 − E 𝑟𝑡|𝑥𝑘𝑘 < 𝑥𝑘  
 The expectation is taken across stocks. 
 The weights and returns are both decided on time t. 

 Statistical factors: PCA on returns 
 Each of the most significant factor premium is a linear combination of the stock 

returns at time t. 
 Pick the K eigenvectors 𝑞1, …, 𝑞𝐾 that correspond to the largest K eigenvalues. 
 Statistical factors are: 𝑓𝑖,𝑡 = 𝑞𝑖′𝑟𝑡. 

 Note: all of them, by construction, change over time. 



Economic Factor Model – Factor Exposures 
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 For each of the N stocks, run an OLS to compute the factor exposures/factor 
sensitivities/factor loadings. 

 Report betas and their standard errors. 
 Merger: 

 𝛽�𝐴𝐴 = 𝑠𝐴
𝑠𝐴+𝑠𝐵

𝛽�𝐴 + 𝑠𝐵
𝑠𝐴+𝑠𝐵

𝛽�𝐵 

 𝑠𝐴: pre-merger market capitalization of firm A 
 𝑠𝐵: pre-merger market capitalization of firm B 

 IPO by Characteristic Matching: 
 We use the factor exposures of M similar firms. 
 To identify the M similar firms, 

 We choose L company characteristics; 
 Compute the z-score of those L characteristics for a group of firms 𝑧𝑖 = 𝑧𝑖𝑖, … , 𝑧𝑖𝑖  as well as 

those of the new company, z = 𝑧1, … , 𝑧𝐿 . 
 Set a threshold, 𝜀. 
 The similar firms are those with smaller distances. That is, 

 𝑧 − 𝑧𝑖 < 𝜀. 

 𝛽̂ = 1
𝑀

𝛽̂1 + ⋯+ 𝛽̂𝑀  
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1. Set the time interval, e.g. monthly or rebalacing period, and time period of data, e.g. 3 to 5 years. 
2. Set the investment universe. 
3. Choose the factors for the model. 
4. Set the risk-free rate. 
5. Collect stock returns for the time period at each interval. If benchmarking, 

1. Better use risk-free rate adjusted return: 𝑟𝑖𝑖∗ = 𝑟𝑖𝑖 − 𝑟𝑓𝑓 
2. If for benchmarking, we use residual stock returns in lieu of stock returns. 
3. 𝑟𝑖� ≡ 𝛼𝑖� + 𝜖𝑖� = 𝑟𝑖 − 𝛽𝑖� 𝑟𝐵 

6. Collect factor premium data for the time period at each interval. 
1. Economic/behavior/market factors: readily available 
2. Fundamental/technical/analyst factors: zero investment portfolio method 
3. Statistical factors: PCA 

7. Estimate the factor exposures from time series regression of stock returns on premium. 
1. If not enough factor-premium data, do characteristic matching before regression. 

8. Check robustness by splitting the data into subsets and compare the estimates for each subset. Highlight major 
differences. 

1. Split by time periods. 
2. Split by sectors. 

9. If the estimation is not robust (subset estimates are not similar), try a different estimation method. 
10. Compute the expected stock returns. 
11. Compute the risks of the stocks for both non-diversifiable and diversifiable risks. 
12. Compute the correlation matrix of stocks returns. 
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SaaS Tools for Modeling and Constructing "Alpha 
Strategy" 

• Mutual fund and private equity fund managers, quantitative investment teams, etc. 

• In China, the majority of the quantitative trading strategies are alpha strategies. They recently have poor 
performance. Funds are extremely desperate to look for a new direction 

• NM’s research library provides two tools that can immediately improve the performance of existing alpha 
strategies 

• multi-factor model 

• asset allocation, portfolio optimization 

• Provide users with an intuitive and easy to use interface to complete complicated tasks such as financial 
modeling, strategy optimization, return performance and risk control, all without programming 
- With our system, traders only need to do the first step, factor selection, and leave the rest of the complex process to 

system automation, hence great efficiency in strategy research and time to production 

Factor 
selection/definit

ion 

Model 
construction 

Portfolio 
optimization Backtesting Reporting 

• α factors 
• sorting, grouping 
• factor exposures 
• factor premiums 

• OLS regression 
• panel regression 
• α、β computation 

• Markowitz 
• Black-Litterman 
• Second Order Conic 

Programming 
• uncertain mean and 

covariance 
• customized objective 

functions 
• corner portfolios 

• historical backtesting 
• Monte Carlo 

backtesting 
• bootstrapping 

backtesting 
• scenario and stress 

testing 

• VaR computation 
• p&l attribution 
• risk assessment 
• easy to understand, 

professional and 
standardized report 
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