
MY EXPERIENCE WITH ALGORITHMIC 

TRADING 

Haksun Li 

haksun.li@numericalmethod.com 

www.numericalmethod.com 

mailto:haksun.li@numericalmethod.com
http://www.numericalmethod.com/


SPEAKER PROFILE 

 Haksun Li, Numerical Method Inc. 

 Quantitative Trader 

 Quantitative Analyst 

 PhD, Computer Science, University of 

Michigan Ann Arbor 

 M.S., Financial Mathematics, University of 

Chicago 

 B.S., Mathematics, University of Chicago 

http://www.numericalmethod.com/


OVERVIEW 

 Algo trading is the automated execution of 

trading orders decided by quantitative market 

models. 

 It is an arms race to build 

more reliable and faster execution platforms 

(computer sciences) 

more comprehensive and accurate prediction 

models (mathematics) 



MARKET MAKING 

Quote to the market. 

Ensure that the portfolios respect certain risk 

limits, e.g., delta. 

Money comes mainly from client flow, e.g., bid-

ask spread. 



STATISTICAL ARBITRAGE 

 Bet on the market direction, e.g., whether the 

price will go up or down. 

 Look for repeatable patterns. 

 Money comes from winning trades. 



PREREQUISITE 

 Build or buy a trading infrastructure. 

many vendors for Gateways, APIs 

Reuters Tibco 

 Collect data, e.g., timestamps, order book 

history, numbers, events. 

Reuters, EBS 

 Clean and store the data. 

 flat file, HDF5, Vhayu, KDB, One Tick 



TRADING INFRASTRUCTURE 

 Gateways to the exchanges and ECNs. 

 ION, ECN specific API 

 Communication network for broadcasting 
and receiving information about, e.g., order 
book, events and order status. 

 API: the interfaces between various 
components, e.g., strategy and database, 
strategy and broker, strategy and exchange, 
etc. 



PROCESS 

1. Generate or improve a trading idea. 

2. Quantify the idea and build a model for it. 

3. Back test the strategy. 

4. Collect the performance statistics. 

5. If the statistics are not good enough, go back to #1. 

6. If the strategy does not add significant value to the 
existing portfolio, go back to #1. 

7. Implement the strategy on the execution platform. 

8. Trade. 



SAMPLE TRADING SYSTEM DESIGN 

a strategy a strategy a strategy a strategy 

broker 

a strategy a strategy a strategy a strategy 

Exchanges 



BROKER JUSTIFICATIONS 

 Mimic how a human trader and broker work. 

 Separation of responsibilities. 



BROKER JUSTIFICATIONS 

• implements the trading logic; 

• needs not wait/block for handshake 
messages from the exchanges. 

A strategy 

• handles all the complicated order routing 
protocols with the exchanges 

• acts an internal market to aggregate and 
reuse orders to optimize execution; 

• acts as a guard to catch errors. 

Broker 



PRACTICAL ISSUES 

 Filtration 

 Consistency 

 Internal Order Matching 

 Rapid Strategy Implementation 

 Safety 



FILTRATION PROBLEM 

 A strategy is quick and mostly CPU 
computations. 

 The broker is slow and may wait/block for 
messages. 

 By the time the broker serves a strategy 
request, the order conditions may no longer be 
valid. 

 This problem is especially prominent for a 
strategy that sends out orders at a very high 
rate. 



FILTRATION CONCEPTUAL DIAGRAM 

event1 event2 event3 
event2000 …… 

act1 for 

event1 

Is executing act5 still 

the right thing to do? 

event queue 

quick strategy 

slow broker 

act2 for 

event2 

act5 for 

event5 
…… 



FILTRATION SOLUTIONS 

 Manage only one order at a time; always wait 

for confirmation. 

This is only appropriate for low frequency 

strategies that do not anticipate orders to 

optimize execution. 

 Allow error margins for, e.g., overfilling. 

Catch and correct the cumulated errors 

afterward. 



FILTRATION SOLUTION: VERIFICATION 

 Implement the notion of “Change”. 

 Ignore a strategy request if an order 

condition is invalidated due to “Change”. 

 This implementation needs to be very 

efficient to avoid it becoming the bottleneck. 



 The market states may 

change during strategy 

computation. 

 For example, an order-fill 

message may arrive to 

update the position 

information. 

CONSISTENCY 

pos = 

2 

pos = 

3 

inconsistency logic 



CONSISTENCY SOLUTION 

 Take a snapshot before strategy 

computation. 



INTERNAL ORDER MATCHING 

 Reuse existing orders in the Market as much 

as we can. 

Canceling and adding back a limit order will put 

the order at the end of queue. 

 Increase execution probability. 

 Reduce slippage. 



RAPID STRATEGY IMPLEMENTATION PROBLEM 

 We want to release a strategy to production 

in hours if not sooner after research. 

 Our experience is that the majority of the 

code is about order manipulations. 

This is especially true for high frequency trading 

for which clever order manipulations are 

necessary to reduce slippage. 



ORDER ANTICIPATION EXAMPLE 

 Suppose the current price is 100. We place a 
limit order to buy at 90. 

 The price moves up to 110, leaving the order 
unfilled. 

 We cancel the order at 90, place a new limit 
order at 100, chasing the market. 

 Code: delete an old order, wait 

for confirmation, add a new 

order, etc. 



MESSY CODE 

 There are also the exceptions to handle. 
 what if the old order is already filled before the delete 

command arrives at the Market? 

 what if the old order is partially filled and then 
deleted? 

 what if the confirmation arrives very late (or never 
arrives)? 

 what if the price changes before the new order is 
placed? 

 what if the new order is rejected by the Market? 

 what if the gateway, market, or adaptor is down? 



KEEP THE STRATEGY SIMPLE 

 DON’T MIX TRADING LOGIC WITH ORDER 

ROUTING/MANIPULATION CODE. 



A STRATEGY LOGIC AS A FUNCTION 

 A strategy is a function that maps a set of 

states into a set of orders. 

 

 

 The function is Markovian in terms of the 

states for easy debugging (unit test). 

 This enforces simple coding but not 

necessarily simple strategy. 

    ,order,order,state,state,state
21321

F



SAFETY 

 Putting the proper risk controls in place is the 
number one priority because an out-of-control or 
out-of-expectation system puts the firm at a 
HUGE risk. 

 All trading constraints, e.g., position limit, 
stoploss, must be respected regardless of what 
a strategy does. 

 This needs to remain true even if we have a 
buggy, malfunctioned or even ill-intentional 
code. 



CHECKS 

 Internal vs. External limit checker. 

 Position limits. 

 Individual vs. Global stoploss. 

 Throttling number of orders sent. 



A SAMPLE TRADING IDEA 

 Two simple strategies 

mean reversion: buy when price goes down; sell 

otherwise 

 trend following: buy when price goes up; sell 

otherwise 

 When to use #1 and when to use #2? 



HIDDEN MARKOV MODEL 

 Decide the “hidden” states: up trend, mean 

reverting, down trend 

MEAN 

REVERTING 

μ ≈ 0 

 

DOWN 

μ >> 0 

UP 

μ >> 0 

p11 

p12 

p13 

p22 

p21 p23 

p33 

p32 

p31 



THE MATH MODEL 

 St: the states, time dependent 

 Xt: the time series of interests, time 
dependent, e.g., the log returns 

 Zt: the matrix of factors, time dependent 

 β, σ: the linear regression results; state (hence 
time) dependent 

 ε: white noise 

tSStt
tt

ZX  



ZT – THE FACTORS 

 historical returns (lags in the AR model) 

 ranges of returns 

 historical volatilities 

 past pnls 

 any other information you may think useful, 

e.g., interest rates, events 



THE MATH PROBLEM 

 We need to estimate β and σ for each state. 

 We need to estimate the transition matrix 

{pij}. 



THE MATH SOLUTION 

 We ultimately want to know Xt+1 from the 

information available at time t. 

 estimate the probabilities of which state we are 

in at time t, St 

 use the β and σ for the most likely state 

 plug the numbers into the equation to compute Xt 



THE MATH PROCEDURES 

 Maximum likelihood (Hamilton 1989) 

 EM Algorithm (Hamilton 1990) 

 Smoothed probabilities (Kim 1994) 

 Back test the strategy! 



SUANSHU INITIATIVES 

 The majority of traders do not have the math 

training to understand the mathematics details. 

 For a capable quant, it may take 1 to 2 months 

to code a robust estimation procedure with 

elegant code, extensive test cases and 

professional documentations. 

 Too expensive and time-consuming for a small 

hedge fund or prop. team in a bank. 



SUANSHU OBJECTIVES 

 SuanShu is a java numerical library of numerical 
methods and for numerical analysis. 

 It has a collection of mathematics concepts and 
algorithms. 

 It alleviates the users from writing infrastructural 
math code so they can focus on their 
applications. 

 SuanShu has thousands of test cases and is 
professionally documented. 



BACKTESTING 

 Backtesting tells you whether a strategy worked 
in the past and not whether it will work in the 
future. 

 It gives an objective way to measure 
performance, and hence confidence to the 
strategy. 

 It allows systematic analysis of winning and 
losing trades, which in turn can be used to 
refine the strategy. 

 It helps decide stoploss and take-profit. 



BOOTSTRAPPING 

 We observe only one history. 

 What if the world had evolve different? 

 Simulate “similar” histories to get confidence 

interval. 

 White's reality check (White, H. 2000). 



SAMPLE BACKTESTER DESIGN 

data source: 

Reuters 

data source: 

EBS 

macro 

economics 

data, e.g., 

interest rate 

data cache 

data source: 

CME 

controller, 

time 

synchronizer, 

looping over 

simulated 

time 

event 

database 

a strategy 
broker 

trade 

blotter 

pnl 

tracker 

stoploss 

components 

a strategy 
broker 

trade 

blotter 

pnl 

tracker 

stoploss 

components 

a strategy 
broker 

trade 

blotter 

pnl 

tracker 

stoploss 

components 

sim 

market, 

order book, 

e.g., 

EURUSD 

sim 

market, 

order book, 

e.g., 

USDJPY 

real 

market, 

order book, 

e.g., 

EURUSD 



SOME PERFORMANCE STATISTICS 

 pnl 

 mean, stdev, corr 

 (confidence interval of) Sharpe ratio 

 Omega 

 breakeven bid/ask 

 max drawdown 

 breakeven ratio 

 biggest winner/loser 



OPTIMIZER 

 Most strategies require calibration to update 

parameters for the current trading regime. 

 Occam’s razor: the fewer parameters the better. 

 For strategies that take parameters from the 

Real line: Nelder-Mead, BFGS 

 For strategies that take integers: Mixed-integer 

non-linear programming (branch-and-bound, 

outer-approximation) 



SENSITIVITY 

 How much does the performance change for 

a small change in parameters? 

 Avoid the optimized parameters merely being 

statistical artifacts. 

 A plot of measure vs. d(parameter) is a good 

visual aid to determine robustness. 

 We look for plateaus. 



SUMMARY 

 Algo trading is a rare field in quantitative 

finance where computer sciences is at least 

as important as mathematics, if not more. 

 Algo trading is a very competitive field in 

which technology is a decisive factor. 


